Orosept Uses, Dosage, Side Effects and more

Orosept Uses, Dosage, Side Effects, Food Interaction and all others data.

Chlorhexidine is a very potent cationic chemoprophylactic agent that has a broad-spectrum of activity against gm+ve and gm-ve bacteria. It is both bacteriostatic and bactericidal depending on its concentration. The bactericidal effect, which is achieved at high concentrations, is due to the binding of the cationic to negatively charged bacterial cell walls and extramicrobial complexes. Bacteriostatic effect is achieved at low concentrations which causes an alteration of bacterial cell osmotic equilibrium and leakage of potassium and phosphorus.

Lidocaine is an amide type local anaesth. It stabilises the neuronal membrane and inhibits Na ion movements, which are necessary for conduction of impulses. In the heart, lidocaine reduces depolarisation of the ventricles during diastole and automaticity in the His-Purkinje system. Duration of action potential and effective refractory period are also reduced.

Trade Name Orosept
Generic Chlorhexidine + Lidocaine
Type
Therapeutic Class Oral preparations
Manufacturer
Available Country
Last Updated: January 7, 2025 at 1:49 am
Orosept
Orosept

Uses

Acute sore throat, Oral hygiene, Sore throat

Orosept is also used to associated treatment for these conditions: Catarrh of the throat, Chemotherapy Induced Mucositis, Chronic Wounds, Decubitus Ulcer, Dental Cavity, Dysphagia, Eczema infected, Foeter Ex Ore, Gingival Bleeding, Gingival disorders NEC, Gingivitis, Glossitis, Hoarseness, Infection, Infectious Periodontal Diseases, Injury Throat, Mild to Moderate Inflammatory Reaction of the Oral Cavity, Mild to Moderate Inflammatory Reaction of the Pharynx, Mouth injury, Mucositis, Neurodermatitis, Ocular Inflammation, Ocular Irritation, Oral Aphthous Ulcer, Oral Infection, Pain, Periodontitis, Pharyngitis, Plaque, Dental, Postoperative Wound Infection, Purulent Gingivitis, Radiation Mucositis, Red eye, Ringworm, Skin Infections, Skin Infections, Bacterial, Sore Throat, Stomatitis, Surgical Wound, Tissue Damage, Tonsillitis, Ulcer, Aphthous, Ulcers, Leg, Wound Infections, Dry, cracked skin, Gum disorder, Gum pain, Moderate Gingivitis, Oral lesions, Recurrent Oral fungal infection, Severe Gingivitis, Superficial Wounds, Throat disinfection, Tongue inflammation, Anesthesia of Mucous Membrane, Antimicrobial Therapy, Contact Lens Care, Disinfection, Disinfection of External Genitalia, Disinfection of the Urethra, Disinfection of the Vaginal Mucosa, Irrigation therapy, Lubrication of the Urethra, Oral Care, Oral Hygiene, Oropharyngeal antisepsis, Skin disinfection, Surgical Scrubbing, Topical Antisepsis, Urethral Anesthesia, Wound Cleansing, Wound Healing, Oral antisepsis, Oral disinfectionAcute Otitis Media, Anal Fissures, Anorectal discomfort, Arrhythmia, Back Pain Lower Back, Bacterial Vaginosis (BV), Burns, Cervical Syndrome, Earache, Hemorrhoids, Infection, Inflammatory Reaction caused by ear infection-not otherwise specified, Insect Bites, Joint Pain, Mixed Vaginal Infections, Multiple Myeloma (MM), Myringitis, Neuritis, Osteolysis caused by Bone Tumors, Osteoporosis, Otitis Externa, Pain caused by ear infection-not otherwise specified, Pain, Inflammatory, Post-Herpetic Neuralgia (PHN), Postherpetic Neuralgia, Primary Hyperparathyroidism, Rheumatic Diseases, Rheumatic Joint Disease, Sciatica, Skin Irritation, Soft Tissue Inflammation, Sore Throat, Sunburn, Susceptible infections, Trichomonas Vaginitis, Ulcers, Leg, Urethral Strictures, Vulvovaginal Candidiasis, Abrasions, Anal discomfort, Arrhythmia of ventricular origin, Cutaneous lesions, Gum pain, Minor burns, Superficial Wounds, Susceptible Bacterial Infections, Ulceration of the mouth, Viral infections of the external ear canal, Post Myocardial Infarction Treatment, Regional Anesthesia, Local anesthesia therapy

How Orosept works

Chlorhexidine’s broad-spectrum antimicrobial effects are due to its ability to disrupt microbial cell membranes. The positively charged chlorhexidine molecule reacts with negatively charged phosphate groups on microbial cell surfaces - this reaction both destroys the integrity of the cell, allowing leakage of intracellular material, and allows chlorhexidine to enter the cell, causing precipitation of cytoplasmic components and ultimately cell death. The specific means of cell death is dependent on the concentration of chlorhexidine - lower concentrations are bacteriostatic and result in leakage of intracellular substances such as potassium and phosphorous, whereas higher concentrations are bactericidal and cause cytoplasmic precipitation.

Lidocaine is a local anesthetic of the amide type . It is used to provide local anesthesia by nerve blockade at various sites in the body . It does so by stabilizing the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses, thereby effecting local anesthetic action . In particular, the lidocaine agent acts on sodium ion channels located on the internal surface of nerve cell membranes . At these channels, neutral uncharged lidocaine molecules diffuse through neural sheaths into the axoplasm where they are subsequently ionized by joining with hydrogen ions . The resultant lidocaine cations are then capable of reversibly binding the sodium channels from the inside, keeping them locked in an open state that prevents nerve depolarization . As a result, with sufficient blockage, the membrane of the postsynaptic neuron will ultimately not depolarize and will thus fail to transmit an action potential . This facilitates an anesthetic effect by not merely preventing pain signals from propagating to the brain but by aborting their generation in the first place .

In addition to blocking conduction in nerve axons in the peripheral nervous system, lidocaine has important effects on the central nervous system and cardiovascular system . After absorption, lidocaine may cause stimulation of the CNS followed by depression and in the cardiovascular system, it acts primarily on the myocardium where it may produce decreases in electrical excitability, conduction rate, and force of contraction .

Dosage

Orosept dosage

Adult: Brush teeth with 1 inch of gel once or bid for about 1 min.

Child: Safety & Efficacy has not been established

Side Effects

Skin sensitivity; reversible brown staining of the teeth; tongue discoloration and burning sensation; transient taste disturbance; parotid gland swelling.

Toxicity

The LD50 of subcutaneously administered chlorhexidine in mice is >5 g/kg.

Small children are likely to be more susceptible to chlorhexidine overdose - ingestion of 1-2 ounces by a small child may result in gastric distress, nausea, and intoxication. Treatment should consist of symptomatic and supportive measures. Seek medical attention if a child ingests >4 ounces of chlorhexidine solution or if symptoms of intoxication develop post-exposure.

Symptoms of overdose and/or acute systemic toxicity involves central nervous system toxicity that presents with symptoms of increasing severity . Patients may present initially with circumoral paraesthesia, numbness of the tongue, light-headedness, hyperacusis, and tinnitus . Visual disturbance and muscular tremors or muscle twitching are more serious and precede the onset of generalized convulsions . These signs must not be mistaken for neurotic behavior . Unconsciousness and grand mal convulsions may follow, which may last from a few seconds to several minutes . Hypoxia and hypercapnia occur rapidly following convulsions due to increased muscular activity, together with the interference with normal respiration and loss of the airway . In severe cases, apnoea may occur. Acidosis increases the toxic effects of local anesthetics . Effects on the cardiovascular system may be seen in severe cases . Hypotension, bradycardia, arrhythmia and cardiac arrest may occur as a result of high systemic concentrations, with potentially fatal outcome .

Pregnancy Category B has been established for the use of lidocaine in pregnancy, although there are no formal, adequate, and well-controlled studies in pregnant women . General consideration should be given to this fact before administering lidocaine to women of childbearing potential, especially during early pregnancy when maximum organogenesis takes place . Ultimately, although animal studies have revealed no evidence of harm to the fetus, lidocaine should not be administered during early pregnancy unless the benefits are considered to outweigh the risks . Lidocaine readily crosses the placental barrier after epidural or intravenous administration to the mother . The ratio of umbilical to maternal venous concentration is 0.5 to 0.6 . The fetus appears to be capable of metabolizing lidocaine at term . The elimination half-life in the newborn of the drug received in utero is about three hours, compared with 100 minutes in the adult . Elevated lidocaine levels may persist in the newborn for at least 48 hours after delivery . Fetal bradycardia or tachycardia, neonatal bradycardia, hypotonia or respiratory depression may occur .

Local anesthetics rapidly cross the placenta and when used for epidural, paracervical, pudendal or caudal block anesthesia, can cause varying degrees of maternal, fetal and neonatal toxicity . The potential for toxicity depends upon the procedure performed, the type and amount of drug used, and the technique of drug administration . Adverse reactions in the parturient, fetus and neonate involve alterations of the central nervous system, peripheral vascular tone, and cardiac function .

Maternal hypotension has resulted from regional anesthesia . Local anesthetics produce vasodilation by blocking sympathetic nerves . Elevating the patient’s legs and positioning her on her left side will help prevent decreases in blood pressure . The fetal heart rate also should be monitored continuously, and electronic fetal monitoring is highly advisable .

Epidural, spinal, paracervical, or pudendal anesthesia may alter the forces of parturition through changes in uterine contractility or maternal expulsive efforts . In one study, paracervical block anesthesia was associated with a decrease in the mean duration of first stage labor and facilitation of cervical dilation . However, spinal and epidural anesthesia have also been reported to prolong the second stage of labor by removing the parturient’s reflex urge to bear down or by interfering with motor function . The use of obstetrical anesthesia may increase the need for forceps assistance .

The use of some local anesthetic drug products during labor and delivery may be followed by diminished muscle strength and tone for the first day or two of life . The long-term significance of these observations is unknown . Fetal bradycardia may occur in 20 to 30 percent of patients receiving paracervical nerve block anesthesia with the amide-type local anesthetics and may be associated with fetal acidosis . Fetal heart rate should always be monitored during paracervical anesthesia . The physician should weigh the possible advantages against risks when considering a paracervical block in prematurity, toxemia of pregnancy, and fetal distress . Careful adherence to the recommended dosage is of the utmost importance in obstetrical paracervical block . Failure to achieve adequate analgesia with recommended doses should arouse suspicion of intravascular or fetal intracranial injection . Cases compatible with unintended fetal intracranial injection of local anesthetic solution have been reported following intended paracervical or pudendal block or both. Babies so affected present with unexplained neonatal depression at birth, which correlates with high local anesthetic serum levels, and often manifest seizures within six hours . Prompt use of supportive measures combined with forced urinary excretion of the local anesthetic has been used successfully to manage this complication .

It is not known whether this drug is excreted in human milk . Because many drugs are excreted in human milk, caution should be exercised when lidocaine is administered to a nursing woman .

Dosages in children should be reduced, commensurate with age, body weight and physical condition .

The oral LD 50 of lidocaine HCl in non-fasted female rats is 459 (346-773) mg/kg (as the salt) and 214 (159-324) mg/kg (as the salt) in fasted female rats .

Precaution

Avoid contact with sensitive tissues and eyes. Do not use in body cavities. Avoid eating, drinking, or brushing your teeth just after using this medication

Interaction

May increase serum levels with cimetidine and propranolol. Increased risk of cardiac depression with other antiarrhythmics. Additive cardiac effects with IV phenytoin. Hypokalaemia caused by acetazolamide, loop diuretics and thiazides may antagonise effect of lidocaine. Dose requirements may be increased with longterm use of phenytoin and other enzyme-inducers.

Volume of Distribution

The volume of distribution determined for lidocaine is 0.7 to 1.5 L/kg .

In particular, lidocaine is distributed throughout the total body water . Its rate of disappearance from the blood can be described by a two or possibly even three-compartment model . There is a rapid disappearance (alpha phase) which is believed to be related to uptake by rapidly equilibrating tissues (tissues with high vascular perfusion, for example) . The slower phase is related to distribution to slowly equilibrating tissues (beta phase) and to its metabolism and excretion (gamma phase) .

Lidocaine's distribution is ultimately throughout all body tissues . In general, the more highly perfused organs will show higher concentrations of the agent . The highest percentage of this drug will be found in skeletal muscle, mainly due to the mass of muscle rather than an affinity .

Elimination Route

Topically, chlorhexidine is unlikely to undergo any degree of systemic absorption. Orally administered chlorhexidine, such as that found in oral rinses for dental purposes, is very poorly absorbed from the gastrointestinal tract - the Cmax in human subjects following an oral dose of 300mg was 0.206 µg/g and occurred approximately 30 minutes after ingestion (Tmax). Following the insertion of 4 PerioChips in 18 adult patients, no detectable plasma or urine chlorhexidine levels were observed.

In general, lidocaine is readily absorbed across mucous membranes and damaged skin but poorly through intact skin . The agent is quickly absorbed from the upper airway, tracheobronchial tree, and alveoli into the bloodstream . And although lidocaine is also well absorbed across the gastrointestinal tract the oral bioavailability is only about 35% as a result of a high degree of first-pass metabolism . After injection into tissues, lidocaine is also rapidly absorbed and the absorption rate is affected by both vascularity and the presence of tissue and fat capable of binding lidocaine in the particular tissues .

The concentration of lidocaine in the blood is subsequently affected by a variety of aspects, including its rate of absorption from the site of injection, the rate of tissue distribution, and the rate of metabolism and excretion . Subsequently, the systemic absorption of lidocaine is determined by the site of injection, the dosage given, and its pharmacological profile . The maximum blood concentration occurs following intercostal nerve blockade followed in order of decreasing concentration, the lumbar epidural space, brachial plexus site, and subcutaneous tissue . The total dose injected regardless of the site is the primary determinant of the absorption rate and blood levels achieved . There is a linear relationship between the amount of lidocaine injected and the resultant peak anesthetic blood levels .

Nevertheless, it has been observed that lidocaine hydrochloride is completely absorbed following parenteral administration, its rate of absorption depending also on lipid solubility and the presence or absence of a vasoconstrictor agent . Except for intravascular administration, the highest blood levels are obtained following intercostal nerve block and the lowest after subcutaneous administration .

Additionally, lidocaine crosses the blood-brain and placental barriers, presumably by passive diffusion .

Half Life

The elimination half-life of lidocaine hydrochloride following an intravenous bolus injection is typically 1.5 to 2.0 hours . Because of the rapid rate at which lidocaine hydrochloride is metabolized, any condition that affects liver function may alter lidocaine HCl kinetics . The half-life may be prolonged two-fold or more in patients with liver dysfunction .

Clearance

The mean systemic clearance observed for intravenously administered lidocaine in a study of 15 adults was approximately 0.64 +/- 0.18 L/min .

Elimination Route

Excretion of chlorhexidine gluconate occurs almost exclusively via the feces, with less than 1% of an ingested dose excreted in the urine.

The excretion of unchanged lidocaine and its metabolites occurs predominantly via the kidney with less than 5% in the unchanged form appearing in the urine . The renal clearance is inversely related to its protein binding affinity and the pH of the urine . This suggests by the latter that excretion of lidocaine occurs by non-ionic diffusion .

Pregnancy & Breastfeeding use

Pregnancy Category B. Animal reproduction studies have failed to demonstrate a risk to the fetus and there are no adequate and well-controlled studies in pregnant women OR Animal studies have shown an adverse effect, but adequate and well-controlled studies in pregnant women have failed to demonstrate a risk to the fetus in any trimester.

Contraindication

Hypersensitivity to any of the ingredients

Special Warning

Hepatic Impairment Parenteral: Dosage reduction may be needed.

Acute Overdose

Symptoms: Severe hypotension, asystole, bradycardia, apnoea, seizures, coma, cardiac arrest, resp arrest and death.

Management: Maintain oxygenation, stop convulsion and support the circulation.

Storage Condition

Store in a cool and dry place, protected from light.

Store below 25°C.

Innovators Monograph


*** Taking medicines without doctor's advice can cause long-term problems.
Share