Artro Plus
Artro Plus Uses, Dosage, Side Effects, Food Interaction and all others data.
Glucosamine is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids. Glucosamine stimulates the production of proteoglycans and increases sulfate uptake by articular cartilage.
The administration of glucosamine, in theory, provides a building block towards the synthesis of glycosaminoglycans, slowing the progression of osteoarthritis and relieving symptoms of joint pain. Studies to this date examining the efficacy of glucosamine sulfate have been inconclusive. Glycosaminoglycans contribute to joint cartilage elasticity, strength, and flexibility. A systematic review of various studies and guidelines determined that modest improvements were reported for joint pain and function in patients taking glucosamine. A consistent joint space narrowing was observed, but with an unclear clinical significance.
Selenium is a trace metal in the human body particularly important as a component of glutathione peroxidase, an important enzyme in the prevention of cellular damage by free radicals and reactive oxygen species
Selenium is incorporated into many different selenoproteins which serve various functions throughout the body .
A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with anemia, short stature, hypogonadism, impaired wound healing, and geophagia. It is identified by the symbol Zn .
A newer study suggests implies that an imbalance of zinc is associated with the neuronal damage associated with traumatic brain injury, stroke, and seizures .
Understanding the mechanisms that control brain zinc homeostasis is, therefore, imperative to the development of preventive and treatment regimens for these and other neurological disorders .
Trade Name | Artro Plus |
Generic | Glucosamine + Methylsulfonylmethane + Selenium + Vitamin C + Zinc + Mangan |
Type | Caplet |
Therapeutic Class | |
Manufacturer | Ikapharmindo Putramas |
Available Country | Indonesia |
Last Updated: | September 19, 2023 at 7:00 am |
Uses
Indicated for the treatment of osteoarthritis of knee, hip, spine, and other locations. Also used as dietary supplement
Selenium is an ingredient found in a variety of supplements and vitamins.
For the supplementation of total parenteral nutrition to prevent hyposelenemia .
Zinc is an essential element commonly used for the treatment of patients with documented zinc deficiency.
Zinc can be used for the treatment and prevention of zinc deficiency/its consequences, including stunted growth and acute diarrhea in children, and slowed wound healing. It is also utilized for boosting the immune system, treating the common cold and recurrent ear infections, as well as preventing lower respiratory tract infections .
Artro Plus is also used to associated treatment for these conditions: Arthritis, Backache, Joint Pain, Osteoarthritis (OA), Osteoarthritis of the KneeNutritional supplementationCandidiasis, Common Cold, Diaper Dermatitis, Diaper Rash, Eye redness, Iron Deficiency (ID), Ocular Irritation, Skin Irritation, Sunburn, Wilson's Disease, Zinc Deficiency, Dietary and Nutritional Therapies, Dietary supplementation
How Artro Plus works
The mechanism of action of glucosamine in joint health is unclear, however there are several possible mechanisms that contribute to its therapeutic effects. Because glucosamine is a precursor for glycosaminoglycans, and glycosaminoglycans are a major component of joint cartilage, glucosamine supplements may help to rebuild cartilage and treat the symptoms of arthritis. Some in vitro studies show evidence that glucosamine reduces inflammation via inhibition of interferon gamma and Nuclear factor kappa B subunit 65 (NF-κB p65), improving the symptoms of arthritis and joint pain. Clinical relevance is unknown at this time.
Selenium is first metabolized to selenophosphate and selenocysteine. Selenium incorporation is genetically encoded through the RNA sequence UGA . This sequence is recognized by RNA ste loop structures called selenocysteine inserting sequences (SECIS). These structures require the binding of SECIS binding proteins (SBP-2) to recognize selenocystiene. The specialized tRNA is first bound to a serine residue which is then enzymatically processed to a selylcysteyl-tRNA by selenocystiene sythase using selenophosphate as a selenium donor. Other unidentified proteins are required as part of the binding of this tRNA to the ribosome. Selenoproteins appear to be necessary for life as mice with the specialized tRNA gene knocked out exhibited early embryonic lethality .
The most important selenoproteins seem to be the glutathione peroxidases and thioredoxin reductases which are part of the body's defenses againts reactive oxygen species (ROS) . The importance of selenium in these anti-oxidant proteins has been implicated in the reduction of atherosclerosis by preventing the oxidation of low density lipoprotein . Selenium supplementation is also being investigated in the prevention of cancer and has been suggested to be beneficial to immune function .
Zinc has three primary biological roles: catalytic, structural, and regulatory. The catalytic and structural role of zinc is well established, and there are various noteworthy reviews on these functions. For example, zinc is a structural constituent in numerous proteins, inclusive of growth factors, cytokines, receptors, enzymes, and transcription factors for different cellular signaling pathways. It is implicated in numerous cellular processes as a cofactor for approximately 3000 human proteins including enzymes, nuclear factors, and hormones .
Zinc promotes resistance to epithelial apoptosis through cell protection (cytoprotection) against reactive oxygen species and bacterial toxins, likely through the antioxidant activity of the cysteine-rich metallothioneins .
In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF pathway, decreases NF-kappaB activation, leading to decreased gene expression and generation of tumor necrosis factor-alpha (TNF-alpha), IL-1beta, and IL-8 .
There are several mechanisms of action of zinc on acute diarrhea. Various mechanisms are specific to the gastrointestinal system: zinc restores mucosal barrier integrity and enterocyte brush-border enzyme activity, it promotes the production of antibodies and circulating lymphocytes against intestinal pathogens, and has a direct effect on ion channels, acting as a potassium channel blocker of adenosine 3-5-cyclic monophosphate-mediated chlorine secretion. Cochrane researchers examined the evidence available up to 30 September 2016 .
Zinc deficiency in humans decreases the activity of serum thymulin (a hormone of the thymus), which is necessary for the maturation of T-helper cells. T-helper 1 (Th(1)) cytokines are decreased but T-helper 2 (Th(2)) cytokines are not affected by zinc deficiency in humans [A342417].
The change of Th(1) to Th(2) function leads to cell-mediated immune dysfunction. Because IL-2 production (Th(1) cytokine) is decreased, this causes decreased activity of natural-killer-cell (NK cell) and T cytolytic cells, normally involved in killing viruses, bacteria, and malignant cells [A3424].
In humans, zinc deficiency may lead to the generation of new CD4+ T cells, produced in the thymus. In cell culture studies (HUT-78, a Th(0) human malignant lymphoblastoid cell line), as a result of zinc deficiency, nuclear factor-kappaB (NF-kappaB) activation, phosphorylation of IkappaB, and binding of NF-kappaB to DNA are decreased and this results in decreased Th(1) cytokine production .
In another study, zinc supplementation in human subjects suppressed the gene expression and production of pro-inflammatory cytokines and decreased oxidative stress markers [A3424]. In HL-60 cells (a human pro-myelocytic leukemia cell line), zinc deficiency increased the levels of TNF-alpha, IL-1beta, and IL-8 cytokines and mRNA. In such cells, zinc was found to induce A20, a zinc finger protein that inhibited NF-kappaB activation by the tumor necrosis factor receptor-associated factor pathway. This process decreased gene expression of pro-inflammatory cytokines and oxidative stress markers .
The exact mechanism of zinc in acne treatment is poorly understood. However, zinc is considered to act directly on microbial inflammatory equilibrium and facilitate antibiotic absorption when used in combination with other agents. Topical zinc alone as well as in combination with other agents may be efficacious because of its anti-inflammatory activity and ability to reduce P. acnes bacteria by the inhibition of P. acnes lipases and free fatty acid levels .
Dosage
Artro Plus dosage
500 mg tablet three times daily or as directed by the physician. A single dose of 1500 mg daily may also be effective. Obese individuals may need higher doses, based on body weight.
Side Effects
Safety studies with Glucosamine show no demonstrable toxicity. Rarely occurring side effects like mild & reversible intestinal flatulence are almost like placebo.
Toxicity
The oral LD50 of glucosamine in rats is >5000 mg/kg. Symptoms of an overdose with glucosamine may include nausea, vomiting, abdominal pain, and diarrhea (common side effects of this drug). Severe and life-threatening hypersensitivity reactions to glucosamine may occur in patients with a shellfish allergy or asthma.
Oral LD50 of 6700mg/kg in rats . Selenium exposure is teratogenic and can result in fetal death as tested in mice. Chronic toxicity is characterized by hair loss, white horizontal streaking on fingernails, paronchyia, fatigue, irritability, hyperreflexia, nausea, vomiting, garlic odor on breath, and metallic taste . Serum selenium correlates weakly with symtoms. Blood chemistry as well as liver and kidney function are normally unnaffected. Acute toxicity presents as stupor, respiratory depression, and hypotension. ST elevations and t-wave changes characteristic of myocardial infarction may be observed.
According to the Toxnet database of the U.S. National Library of Medicine, the oral LD50 for zinc is close to 3 g/kg body weight, more than 10-fold higher than cadmium and 50-fold higher than mercury .
The LD50 values of several zinc compounds (ranging from 186 to 623 mg zinc/kg/day) have been measured in rats and mice .
Precaution
Diabetics are advised to monitor blood glucose levels regularly while taking Glucosamine. No special studies were formed in patients with renal and/or hepatic insufficiency. The toxicological and pharmacokinetic profile of the product does not indicate limitations for these patients. However, administration to these patients with severe hepatic or renal insufficiency should be under appropriate medical supervision.
Interaction
There have been no reports of significant drug interactions ofGlucosamine with antibiotics, antidepressants, antihypertensives, nitrates, antiarrhythmics, anxiolytic, hypoglycaemic agents, anti-secretives.
Volume of Distribution
Results of a pharmacokinetic study of 12 healthy volunteers receiving three daily consecutive oral administrations of glucosamine sulfate soluble powder demonstrated glucosamine distribution to extravascular compartments. Human pharmacokinetic data for glucosamine is limited in the literature, however, a large animal model study of horses revealed a mean apparent volume of distribution of 15.4 L/kg. Concentrations of glucosamine ranged from 9-15 microM after an intravenous dose, and 0.3-0.7 microM after nasogastric dosing. These concentrations remained in the range of 0.1-0.7 microM in the majority of horses 12 hours after dosing, suggesting effectiveness of a once-daily dose. In rats and dogs, radioactivity from a C-14 labeled dose of glucosamine is detected in the liver, kidneys, articular cartilage, and other areas.
A pharmacokinetic study was done in rats to determine the distribution and other metabolic indexes of zinc in two particle sizes. It was found that zinc particles were mainly distributed to organs including the liver, lung, and kidney within 72 hours without any significant difference being found according to particle size or rat gender .
Elimination Route
In a pharmacokinetic study, glucosamine was 88.7% absorption by the gastrointestinal tract. Absolute oral bioavailability was 44%, likely due to the hepatic first-pass effect. In a pharmacokinetic study of 12 healthy adults receiving oral crystalline glucosamine, plasma levels increased up to 30 times the baseline levels and Cmax was 10 microM with a 1,500 mg once-daily dose. Tmax was about 3 hours. AUC was 20,216 ± 5021 after a 15,000 mg dose.
Oral bioavailability of 90% when given as L-selenomethionine . Tmax of 9.17h.
Zinc is absorbed in the small intestine by a carrier-mediated mechanism . Under regular physiologic conditions, transport processes of uptake do not saturate. The exact amount of zinc absorbed is difficult to determine because zinc is secreted into the gut. Zinc administered in aqueous solutions to fasting subjects is absorbed quite efficiently (at a rate of 60-70%), however, absorption from solid diets is less efficient and varies greatly, dependent on zinc content and diet composition .
Generally, 33% is considered to be the average zinc absorption in humans . More recent studies have determined different absorption rates for various populations based on their type of diet and phytate to zinc molar ratio. Zinc absorption is concentration dependent and increases linearly with dietary zinc up to a maximum rate [L20902].
Additionally zinc status may influence zinc absorption. Zinc-deprived humans absorb this element with increased efficiency, whereas humans on a high-zinc diet show a reduced efficiency of absorption .
Half Life
The estimated half-life for glucosamine is 15 hours after an oral dose. After a bolus intravenous injection of 1005 mg crystalline glucosamine sulfate, the parent drug has an apparent half life of 1.11 hours.
Half life was observed to increase with chronic dosing time . For day 1-2 half life was 1.7 days. For day 2-3 half life was 3 days. For day 3-14 half life was 11.1 days.
The half-life of zinc in humans is approximately 280 days .
Clearance
In one study of healthy patients, the clearance of zinc was found to be 0.63 ± 0.39 μg/min .
Elimination Route
Fecal excretion of glucosamine in a pharmacokinetic study was 11.3% within 120 hours after administration. Urinary elimination was found to be 1.19% within the first 8 hours post-administration.
Mainly excreted in urine as 1beta-methylseleno-N-acetyl-d-galactosamine and trimethylselenonium . The amount excreted as 1beta-methylseleno-N-acetyl-d-galactosamine plateaus at doses around 2microg after which the amount excreted as trimethylselenonium increases. Some selenium is also excreted in feces when given orally .
The excretion of zinc through gastrointestinal tract accounts for approximately one-half of all zinc eliminated from the body .
Considerable amounts of zinc are secreted through both biliary and intestinal secretions, however most is reabsorbed. This is an important process in the regulation of zinc balance. Other routes of zinc excretion include both urine and surface losses (sloughed skin, hair, sweat) .
Zinc has been shown to induce intestinal metallothionein, which combines zinc and copper in the intestine and prevents their serosal surface transfer. Intestinal cells are sloughed with approximately a 6-day turnover, and the metallothionein-bound copper and zinc are lost in the stool and are thus not absorbed .
Measurements in humans of endogenous intestinal zinc have primarily been made as fecal excretion; this suggests that the amounts excreted are responsive to zinc intake, absorbed zinc and physiologic need .
In one study, elimination kinetics in rats showed that a small amount of ZnO nanoparticles was excreted via the urine, however, most of the nanoparticles were excreted via the feces .
Pregnancy & Breastfeeding use
Women who are pregnant or who could become pregnant should not supplement with glucosamine. Glucosamine has not been studied enough to determine their effects on a developing fetus. And no studies have evaluated the use of Glucosamine during pregnancy or lactation. It should be taken with caution and medical advice during pregnancy and lactation.
Contraindication
There are no known contraindications for Glucosamine. But proven hypersensitivity to Glucosamine is a contraindication.
Storage Condition
Should be stored in cool and dry place.
Innovators Monograph
You find simplified version here Artro Plus