Atorva G

Atorva G Uses, Dosage, Side Effects, Food Interaction and all others data.

Atorvastatin (Lipitor®), is a lipid-lowering drug included in the statin class of medications. By inhibiting the endogenous production of cholesterol in the liver, statins lower abnormal cholesterol and lipid levels, and ultimately reduce the risk of cardiovascular disease. More specifically, statin medications competitively inhibit the enzyme hydroxymethylglutaryl-coenzyme A (HMG-CoA) Reductase, which catalyzes the conversion of HMG-CoA to mevalonic acid. This conversion is a critical metabolic reaction involved in the production of several compounds involved in lipid metabolism and transport, including cholesterol, low-density lipoprotein (LDL) (sometimes referred to as "bad cholesterol"), and very-low-density lipoprotein (VLDL). Prescribing statins is considered standard practice for patients following any cardiovascular event, and for people who are at moderate to high risk of developing cardiovascular disease. The evidence supporting statin use, coupled with minimal side effects and long term benefits, has resulted in wide use of this medication in North America.

Atorvastatin and other statins including lovastatin, pravastatin, rosuvastatin, fluvastatin, and simvastatin are considered first-line treatment options for dyslipidemia. The increasing use of this class of drugs is largely attributed to the rise in cardiovascular diseases (CVD) (such as heart attack, atherosclerosis, angina, peripheral artery disease, and stroke) in many countries. An elevated cholesterol level (elevated low-density lipoprotein (LDL) levels in particular) is a significant risk factor for the development of CVD. Several landmark studies demonstrate that the use of statins is associated with both a reduction in LDL levels and CVD risk. Statins were shown to reduce the incidences of all-cause mortality, including fatal and non-fatal CVD, as well as the need for surgical revascularization or angioplasty following a heart attack. Some evidence has shown that even for low-risk individuals (wAtorvastatin is an oral antilipemic agent that reversibly inhibits HMG-CoA reductase. It lowers total cholesterol, low-density lipoprotein-cholesterol (LDL-C), apolipoprotein B (apo B), non-high density lipoprotein-cholesterol (non-HDL-C), and triglyceride (TG) plasma concentrations while increasing HDL-C concentrations. High LDL-C, low HDL-C and high TG concentrations in the plasma are associated with increased risk of atherosclerosis and cardiovascular disease. The total cholesterol to HDL-C ratio is a strong predictor of coronary artery disease, and high ratios are associated with a higher risk of disease. Increased levels of HDL-C are associated with lower cardiovascular risk. By decreasing LDL-C and TG and increasing HDL-C, atorvastatin reduces the risk of cardiovascular morbidity and mortality.

Elevated cholesterol levels (and high low-density lipoprotein (LDL) levels in particular) are an important risk factor for the development of CVD. Clinical studies have shown that atorvastatin reduces LDL-C and total cholesterol by 36-53%. In patients with dysbetalipoproteinemia, atorvastatin reduced the levels of intermediate-density lipoprotein cholesterol. It has also been suggested that atorvastatin can limit the extent of angiogenesis, which can be useful in the treatment of chronic subdural hematoma.

Gabapentin is an anti-convulsant. It is a structural analog of gamma-amino-butyric-acid (GABA). All pharmacological actions following administration of Gabapentin are due to the activity of parent compound. Gabapentin binds with the alpha-2-delta subunit of voltage gated L-type Calcium channel, and inhibits branched chain amino acid transferase & probably inhibits neurotransmitter release of excitatory amino acid.

Gabapentin is an anti-convulsant medication that inhibits the release of excitatory neurotransmitters, allowing for its use against pathologic neurotransmission such as that seen in neuropathic pain and seizure disorders. It has a wide therapeutic index, with doses in excess of 8000 mg/kg failing to cause a fatal reaction in rats.

Gabapentin is ineffective in absence seizures and should be used in caution in patients with mixed seizure disorders involving absence seizures. Gabapentin has been associated with drug reaction with eosinophilia and systemic symptoms (DRESS), otherwise known as multi-organ hypersensitivity. This reaction can prove fatal and early symptoms such as fever, lymphadenopathy, and rash should be promptly investigated.

Trade Name Atorva G
Generic Atorvastatin + Gabapentin
Type Tablet
Therapeutic Class
Manufacturer Zydus Cadila Healthcare Ltd
Available Country India
Last Updated: September 19, 2023 at 7:00 am
Atorva G
Atorva G

Uses

Atorvastatin is an HMG-CoA reductase inhibitor used to lower lipid levels and reduce the risk of cardiovascular disease including myocardial infarction and stroke.

Atorvastatin is indicated for the treatment of several types of dyslipidemias, including primary hyperlipidemia and mixed dyslipidemia in adults, hypertriglyceridemia, primary dysbetalipoproteinemia, homozygous familial hypercholesterolemia, and heterozygous familial hypercholesterolemia in adolescent patients with failed dietary modifications.

Dyslipidemia describes an elevation of plasma cholesterol, triglycerides or both as well as to the presence of low levels of high-density lipoprotein. This condition represents an increased risk for the development of atherosclerosis.

Atorvastatin is indicated, in combination with dietary modifications, to prevent cardiovascular events in patients with cardiac risk factors and/or abnormal lipid profiles.

Atorvastatin can be used as a preventive agent for myocardial infarction, stroke, revascularization, and angina, in patients without coronary heart disease but with multiple risk factors and in patients with type 2 diabetes without coronary heart disease but multiple risk factors.

Atorvastatin may be used as a preventive agent for non-fatal myocardial infarction, fatal and non-fatal stroke, revascularization procedures, hospitalization for congestive heart failure and angina in patients with coronary heart disease.

Prescribing of statin medications is considered standard practice following any cardiovascular events and for people with a moderate to high risk of development of CVD. Statin-indicated conditions include diabetes mellitus, clinical atherosclerosis (including myocardial infarction, acute coronary syndromes, stable angina, documented coronary artery disease, stroke, trans ischemic attack (TIA), documented carotid disease, peripheral artery disease, and claudication), abdominal aortic aneurysm, chronic kidney disease, and severely elevated LDL-C levels.

Gabapentin is used for-

  • Epilepsy
  • Neuropathic pain (e.g. postherpetic neuralgia) and other pain conditions
  • Bipolar disorder
  • Headache syndrome
  • Spasticity in multiple sclerosis and spinal cord diseases

Others indication are:

  • Alcohol withdrawal
  • Schizoaffective disorder
  • Post-traumatic stress disorder
  • Agitation and behavioural disturbances
  • associated with dementia
  • Lesch-Nyhan syndrome
  • Essential tremor
  • Restless legs syndrome
  • Brachioradial pruritus
  • Hemichorea/hemiballismus
  • Hot Flashes

Atorva G is also used to associated treatment for these conditions: Anginal Pain, Cardiovascular Disease (CVD), Coronary Artery Disease (CAD), Coronary artery thrombosis, Dysbetalipoproteinemia, Fredrickson Type III lipidemia, Heterozygous Familial Hypercholesterolemia, High Blood Pressure (Hypertension), High Cholesterol, Homozygous Familial Hypercholesterolemia, Hospitalizations, Hypertriglyceridemias, Mixed Dyslipidemias, Mixed Hyperlipidemia, Myocardial Infarction, Non-familial hypercholesterolemia, Postoperative Thromboembolism, Primary Hypercholesterolemia, Stroke, Transient Ischemic Attack, Elevation of serum triglyceride levels, Heterozygous familial hyperlipidemia, Non-familial hyperlipidemia, Non-fatal myocardial infarction, Primary Hyperlipidemia, Revascularization procedures, Revascularization process, Thrombotic events, Cardiovascular Primary Prevention, Secondary prevention cardiovascular eventPartial-Onset Seizures, Peripheral Neuropathic Pain, Postherpetic Neuralgia

How Atorva G works

Atorvastatin is a statin medication and a competitive inhibitor of the enzyme HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase, which catalyzes the conversion of HMG-CoA to mevalonate, an early rate-limiting step in cholesterol biosynthesis. Atorvastatin acts primarily in the liver, where decreased hepatic cholesterol concentrations stimulate the upregulation of hepatic low-density lipoprotein (LDL) receptors, which increases hepatic uptake of LDL. Atorvastatin also reduces Very-Low-Density Lipoprotein-Cholesterol (VLDL-C), serum triglycerides (TG) and Intermediate Density Lipoproteins (IDL), as well as the number of apolipoprotein B (apo B) containing particles, but increases High-Density Lipoprotein Cholesterol (HDL-C).

In vitro and in vivo animal studies also demonstrate that atorvastatin exerts vasculoprotective effects independent of its lipid-lowering properties, also known as the pleiotropic effects of statins. These effects include improvement in endothelial function, enhanced stability of atherosclerotic plaques, reduced oxidative stress and inflammation, and inhibition of the thrombogenic response. Statins were also found to bind allosterically to β2 integrin function-associated antigen-1 (LFA-1), which plays an essential role in leukocyte trafficking and T cell activation.

The precise mechanism through which gabapentin exerts its therapeutic effects is unclear. The primary mode of action appears to be at the auxillary α2δ-1 subunit of voltage-gated calcium channels (though a low affinity for the α2δ-2 subunit has also been reported). The major function of these subunits is to facilitate the movement of pore-forming α1 subunits of calcium channels from the endoplasmic reticulum to the cell membrane of pre-synaptic neurons. There is evidence that chronic pain states can cause an increase in the expression of α2δ subunits and that these changes correlate with hyperalgesia. Gabapentin appears to inhibit the action of α2δ-1 subunits, thus decreasing the density of pre-synaptic voltage-gated calcium channels and subsequent release of excitatory neurotransmitters. It is likely that this inhibition is also responsible for the anti-epileptic action of gabapentin.

There is some evidence that gabapentin also acts on adenosine receptors and voltage-gated potassium channels, though the clinical relevance of its action at these sites is unclear.

Dosage

Atorva G dosage

Neuropathic pain: 300 mg on day-1, then 300 mg twice on day-2, then 300 mg thrice on day-3, then increase the dose according to response in steps of 300 mg daily to maximum 1800 mg daily in three divided doses.

Partial seizure/epilepsy: 300 mg on day-1, then 300 mg twice on day-2, then 300 mg thrice on day-3, then increase the dose according to response in steps of 300 mg daily to maximum 2400 mg daily in three divided doses.

In case of children:

  • For 3-12 years: 10 to 15 mg/kg, Incase of titration 25-35 mg/kg daily in 3 divided doses.
  • Maintenance dose is 900 mg daily (body weight 26-36 Kg) or 1.2 gm daily (body weight 37-50 Kg).

Gabapentin can be taken orally with or without food.

Side Effects

Generally Gabapentin is well tolerated but a few side effects like fatigue, dizziness , ataxia, weight gain, peripheral edema, dry mouth and somnolence, may occur. Rarely it may cause fulminate hepatic failure, or aplasticanemia.

Toxicity

The reported LD50 of oral atorvastatin in mice is higher than 5000 mg/kg. In cases of overdose with atorvastatin, there is reported symptoms of complicated breathing, jaundice, liver damage, dark urine, muscle pain, and seizures. In case of overdose, symptomatic treatment is recommended and due to the high plasma protein binding, hemodialysis is not expected to generate significant improvement.

In carcinogenic studies with high doses of atorvastatin, evidence of rhabdomyosarcoma, fibrosarcoma, liver adenoma, and liver carcinoma were observed.

In fertility studies with high doses of atorvastatin, there were events of aplasia, aspermia, low testis and epididymal weight, decreased sperm motility, decreased spermatid head concentration and increased abnormal sperm.

Atorvastatin was shown to not be mutagenic in diverse mutagenic assays.

The oral TDLo of gabapentin in humans is 2.86 mg/kg and the LD50 in rats has been found to be >8000 mg/kg. Symptoms of overdose are consistent with the drug's adverse effect profile and involve CNS depression (e.g. dizziness, drowsiness, slurred speech, lethargy, loss of consciousness) and gastrointestinal symptoms such as diarrhea. Management of overdose should involve symptomatic and supportive treatment. Gabapentin can be removed by hemodialysis - this may be of benefit in some patients, such as those with impaired renal function.

Multi-drug overdoses involving gabapentin, particularly in combination with other CNS depressants such as opioids, can result in coma and death - this possibility should be considered when managing overdosage.

Precaution

Patients should be instructed to take Gabapentin only as prescribed. While using Gabapentin patients should be instructed either not to drive a car or to operate other complex machinery until they have gained sufficient experiences about Gabapentin whether or not it affects their mental and/or motor performance adversely.

Interaction

Antacids may reduce the bioavailability of Gabapentin by up to 20%. Cimetidine may alter its reanal excretion. Gabapentin does not interact with other anti-epileptic drug or with oral contraceptive preparations.

Volume of Distribution

The reported volume of distribution of atorvastatin is of 380 L.

The apparent volume of distribution of gabapentin after IV administration is 58±6 L. The drug is found in the CSF in concentrations approximately 9-20% of the corresponding plasma concentrations and is secreted into breast milk in concentrations similar to that seen in plasma.

Elimination Route

Atorvastatin presents a dose-dependent and non-linear pharmacokinetic profile. It is very rapidly absorbed after oral administration. After the administration of a dose of 40 mg, its peak plasma concentration of 28 ng/ml is reached 1-2 hours after initial administration with an AUC of about 200 ng∙h/ml. Atorvastatin undergoes extensive first-pass metabolism in the wall of the gut and the liver, resulting in an absolute oral bioavailability of 14%. Plasma atorvastatin concentrations are lower (approximately 30% for Cmax and AUC) following evening drug administration compared with morning. However, LDL-C reduction is the same regardless of the time of day of drug administration.

Administration of atorvastatin with food results in prolonged Tmax and a reduction in Cmax and AUC.

Breast Cancer Resistance Protein (BCRP) is a membrane-bound protein that plays an important role in the absorption of atorvastatin. Evidence from pharmacogenetic studies of c.421C>A single nucleotide polymorphisms (SNPs) in the gene for BCRP has demonstrated that individuals with the 421AA genotype have reduced functional activity and 1.72-fold higher AUC for atorvastatin compared to study individuals with the control 421CC genotype. This has important implications for the variation in response to the drug in terms of efficacy and toxicity, particularly as the BCRP c.421C>A polymorphism occurs more frequently in Asian populations than in Caucasians. Other statin drugs impacted by this polymorphism include fluvastatin, simvastatin, and rosuvastatin.

Genetic differences in the OATP1B1 (organic-anion-transporting polypeptide 1B1) hepatic transporter encoded by the SCLCO1B1 gene (Solute Carrier Organic Anion Transporter family member 1B1) have been shown to impact atorvastatin pharmacokinetics. Evidence from pharmacogenetic studies of the c.521T>C single nucleotide polymorphism (SNP) in the gene encoding OATP1B1 (SLCO1B1) demonstrated that atorvastatin AUC was increased 2.45-fold for individuals homozygous for 521CC compared to homozygous 521TT individuals.[A181493] Other statin drugs impacted by this polymorphism include simvastatin, pitavastatin, rosuvastatin, and pravastatin.

Absorption of gabapentin is thought to occur solely via facilitated transport by the LAT1 transporter within the intestines. As this process is saturable, the oral bioavailability of gabapentin is inversely proportional to the administered dose - the oral bioavailability of a 900mg/day regimen is approximately 60%, whereas a 4800mg/day regimen results in only 27% bioavailability. The Tmax of gabapentin has been estimated to be 2-3 hours. Food has no appreciable effect on gabapentin absorption.

Half Life

The half-life of atorvastatin is 14 hours while the half-life of its metabolites can reach up to 30 hours.

The elimination t1/2 of gabapentin in patients with normal renal function is 5-7 hours. In patients with reduced renal function, the elimination t1/2 may be prolonged - in patients with a creatinine clearance of 16,17

Clearance

The registered total plasma clearance of atorvastatin is of 625 ml/min.

Both the plasma clearance and renal clearance of gabapentin are directly proportional to the patient's creatinine clearance due to its primarily renal elimination.

Elimination Route

Atorvastatin and its metabolites are mainly eliminated in the bile without enterohepatic recirculation. The renal elimination of atorvastatin is very minimal and represents less than 1% of the eliminated dose.

Gabapentin is eliminated solely in the urine as unchanged drug. Cimetidine, an inhibitor of renal tubular secretion, reduces clearance by approximately 12%, suggesting that some degree of tubular secretion is involved in the renal elimination of gabapentin.

Pregnancy & Breastfeeding use

Pregnancy: Gabapentin is a pregnancy category C drug; it should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Lactation: Gabapentin may be secreted through the breast milk like many other drugs , so it should be used in women who are nursing, only if the benefits clearly outweigh the risks.

Contraindication

Gabapentin is contraindicated in patients who have known hypersensitivity to the drug.

Special Warning

Use in Children: Safety and effectiveness of Gabapentin in the management of neuropathic pain in pediatric patients have not been established. Safety and effectiveness of Gabapentin in the management of seizures in pediatric patients below the age of 3 years have not been established.

Renal impaired patient: In case of renal impaired patient Gabapentin doses must be reduced :

  • CrCl >60 ml/min: 1200 mg/daily in 3 divided doses
  • CrCl 30-60 ml/min: 600 mg/daily in 2 divided doses
  • CrCl 15-30 ml/min: 300 mg/daily single dose
  • CrCl <15 ml/min: 150 mg/daily single dose or 300 mg/every alternate day
  • Heamodialysis: maximum 300 mg after each dialysis Gabapentin can be taken orally with or without food.

Storage Condition

Tablets should be stored below 25° C and protected from light & moisture

Innovators Monograph

You find simplified version here Atorva G


*** Taking medicines without doctor's advice can cause long-term problems.
Share