B-Tuss

B-Tuss Uses, Dosage, Side Effects, Food Interaction and all others data.

Chlorpheniramine is an alkylamine antihistamine. It is one of the most potent H1 blocking agents and is generally effective in relatively low doses. Chlorpheniramine is not so prone to produce drowsiness, readily absorbed from the gastro-intestinal tract, metabolised in the liver and excreted usually mainly as metabolised in the urine.

In allergic reactions an allergen interacts with and cross-links surface IgE antibodies on mast cells and basophils. Once the mast cell-antibody-antigen complex is formed, a complex series of events occurs that eventually leads to cell-degranulation and the release of histamine (and other chemical mediators) from the mast cell or basophil. Once released, histamine can react with local or widespread tissues through histamine receptors. Histamine, acting on H1-receptors, produces pruritis, vasodilatation, hypotension, flushing, headache, tachycardia, and bronchoconstriction. Histamine also increases vascular permeability and potentiates pain. Chlorpheniramine, is a histamine H1 antagonist (or more correctly, an inverse histamine agonist) of the alkylamine class. It competes with histamine for the normal H1-receptor sites on effector cells of the gastrointestinal tract, blood vessels and respiratory tract. It provides effective, temporary relief of sneezing, watery and itchy eyes, and runny nose due to hay fever and other upper respiratory allergies.

Hydrocodone is a synthetic opioid derivative of codeine. It is commonly used in combination with acetaminophen to control moderate to severe pain. Historically, hydrocodone has been used as a cough suppressant although this has largely been replaced by dextromethorphan in current cough and cold formulations. Hydrocodone's more potent metabolite, hydromorphone has also found wide use as an analgesic and is frequently used in cases of severe pain. The FDA first approved Hydrocodone for use as part of the cough suppressant syrup Hycodan in March of 1943.

Hydrocodone inhibits pain signaling in both the spinal cord and brain . Its actions in the brain also produce euphoria, respiratory depression, and sedation.

Phenylephrine is an alpha-1 adrenergic receptor agonist used to treat hypotension, dilate the pupil, and induce local vasoconstriction. The action of phenylephrine, or neo-synephrine, was first described in literature in the 1930s.

Phenylephrine was granted FDA approval in 1939.

Phenylephrine is an alpha-1 adrenergic agonist that raises blood pressure, dilates the pupils, and causes local vasoconstriction. Ophthalmic formulations of phenylephrine act for 3-8 hours while intravenous solutions have an effective half life of 5 minutes and an elimination half life of 2.5 hours. Patients taking ophthalmic formulations of phenylephrine should be counselled about the risk of arrhythmia, hypertension, and rebound miosis. Patients taking an intravenous formulation should be counselled regarding the risk of bradycardia, allergic reactions, extravasation causing necrosis or tissue sloughing, and the concomitant use of oxytocic drugs.

Trade Name B-Tuss
Generic Chlorpheniramine + hydrocodone + phenylephrine
Type Oral liquid
Therapeutic Class
Manufacturer
Available Country United States
Last Updated: September 19, 2023 at 7:00 am
B-Tuss
B-Tuss

Uses

Indicated mainly in allergic conditions including urticaria, sensitivity reactions, angioneurotic oedema, seasonal hay fever, vasomotor rhinitis, cough, common cold, motion sickness.

Hydrocodone is an opioid agonist used as an analgesic and antitussive agent.

Hydrocodone is indicated for the management of acute pain, sometimes in combination with acetaminophen or ibuprofen, as well as the symptomatic treatment of the common cold and allergic rhinitis in combination with decongestants, antihistamines, and expectorants.

Phenylephrine is an alpha-1 adrenergic agonist used in the management of hypotension, generally in the surgical setting associated with the use of anesthetics.

Phenylephrine injections are indicated to treat hypotension caused by shock or anesthesia, an ophthalmic formulation is indicated to dilate pupils and induce vasoconstriction, an intranasal formulation is used to treat congestion, and a topical formulation is used to treat hemorrhoids. Off-label uses include situations that require local blood flow restriction such as the treatment of priapism.

B-Tuss is also used to associated treatment for these conditions: Allergic Contact Dermatitis, Allergic Reaction, Allergic Rhinitis (AR), Allergic cough, Allergies, Allergies caused by Serum, Allergy to House Dust, Allergy to vaccine, Angioneurotic Edema, Asthma, Bronchial Asthma, Bronchitis, Common Cold, Conjunctival congestion, Conjunctivitis, Conjunctivitis allergic, Cough, Cough caused by Common Cold, Coughing caused by Flu caused by Influenza, Drug Allergy, Eye allergy, Fever, Flu caused by Influenza, Food Allergy, Headache, Headache caused by Allergies, Itching of the nose, Itching of the throat, Migraine, Nasal Congestion, Nasal Congestion caused by Common Cold, Pollen Allergy, Productive cough, Pruritus, Rash, Rhinorrhoea, Seasonal Allergic Conjunctivitis, Sinus Congestion, Sinusitis, Sneezing, Transfusion Reactions, Upper Respiratory Tract Infection, Upper respiratory tract hypersensitivity reaction, site unspecified, Urticaria, Vasomotor Rhinitis, Acute Rhinitis, Allergic purpura, Conjunctival hyperemia, Dry cough, Excess mucus or phlegm, Itchy throat, Mild bacterial upper respiratory tract infections, Ocular hyperemia, Throat inflammation, Upper airway congestion, Upper respiratory symptoms, Watery eyes, Watery itchy eyes, Airway secretion clearance therapyCough, Cough caused by Allergic Rhinitis, Cough caused by Common Cold, Nasal Congestion caused by Allergic Rhinitis, Nasal Congestion caused by Common Cold, Pain, Acute, Pain, Chronic, Rhinitis caused by Common Cold, Severe Pain, Moderate Pain, Upper respiratory symptoms caused by Allergic Rhinitis, Upper respiratory symptoms caused by Common ColdAllergic Rhinitis (AR), Anorectal discomfort, Cold, Common Cold, Common Cold/Flu, Congestion of the Conjunctivas, Conjunctivitis allergic, Cough, Cough caused by Common Cold, Eye allergy, Eye redness, Fever, Flu caused by Influenza, Headache, Headache caused by Allergies, Headache caused by Common Cold, Headache caused by Pollen Allergy, Hemorrhoids, Hypotension, Irritative cough, Itching of the nose, Itching of the throat, Laryngotracheitis, Nasal Congestion, Nose discomfort, Ocular Inflammation, Ocular Irritation, Paroxysmal Supraventricular Tachycardia, Pollen Allergy, Respiratory tract congestion, Respiratory tract irritation, Rhinopharyngitis, Rhinorrhoea, Seasonal Allergies, Shock, Cardiogenic, Sinus Congestion, Sinus pressure, Sinusitis, Sneezing, Sore Throat, Tracheobronchitis, Upper respiratory tract hypersensitivity reaction, site unspecified, Vasomotor Rhinitis, Aching caused by Flu caused by Influenza, Bronchial congestion, Itchy throat, Minor aches and pains, Watery itchy eyes, Airway secretion clearance therapy, Antihistamine, Dilatation of the pupil, Vasoconstrictor in regional analgesia therapy

How B-Tuss works

Chlorpheniramine binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine.

Hydrocodone binds to the mu opioid receptor (MOR) with the highest affinity followed by the delta opioid receptors (DOR). Hydrocodone's agonist effect at the MOR is considered to contribute the most to its analgesic effects. Both MOR and DOR are Gi/o coupled and and produces its signal through activation of inward rectifier potassium (GIRK) channels, inhibition of voltage gated calcium channel opening, and decreased adenylyl cyclase activity. In the dorsal horn of the spinal cord, activation of pre-synaptic MOR on primary afferents the inhibition of calcium channel opening and increased activity of GIRK channels hyperpolarizes the neuron and prevents release of neurotransmitters. Post-synaptic MOR can also prevent activation of neurons by glutamate through the aforementioned mechanisms.

Hydrocodone can also produce several actions in the brain similarly to other opioids. Activation of MOR in the periaquaductal gray (PAG) inhibits the GABAergic tone on medulo-spinal neurons. This allows these neurons, which project to the dorsal horn of the spinal cord, to suppress pain signalling in secondary afferents by activating inhibitory interneurons. MOR can also inhibit GABAergic neurons in the ventral tegmental area, removing the inhibitory tone on dopaminergic neurons in the nucleus accumbens and contributing to the activation of the brain's reward and addiction pathway. The inhibitory action or MOR likely contributes to respiratory depression, sedation, and suppression of the cough reflex.

Activation of DOR may contribute to analgesia through the above mechanisms but has not been well studied.

Phenylephrine is an alpha-1 adrenergic agonist that mediates vasoconstriction and mydriasis depending on the route and location of administration. Systemic exposure to phenylephrine also leads to agonism of alpha-1 adrenergic receptors, raising systolic and diastolic pressure as well as peripheral vascular resistance. Increased blood pressure stimulates the vagus nerve, causing reflex bradycardia.

Dosage

B-Tuss dosage

Adults: 4 mg 3-4 times daily.

Children:

  • Up to 1( one) year: 1 mg twice daily
  • 1-5 years: 1 mg 3-4 times daily
  • 6-12 years: 2 mg 3-4 times daily or as directed by the physician

Side Effects

Drowsiness, dizziness, headache, psychomotor impairment, urinary retention, dry mouth, blurred vision and gastro intestinal disturbances, paradoxical stimulation may rarely occur, especially in high dosage or in children.

Toxicity

Oral LD50 (rat): 306 mg/kg; Oral LD50 (mice): 130 mg/kg; Oral LD50 (guinea pig): 198 mg/kg [Registry of Toxic Effects of Chemical Substances. Ed. D. Sweet, US Dept. of Health & Human Services: Cincinatti, 2010.] Also a mild reproductive toxin to women of childbearing age.

Overdosage with hydrocodone presents as opioid intoxication including respiratory depression, somnolence, coma, skeletal muscle flaccidity, cold and clammy skin, constricted pupils, pulmonary edema, bradycardia, hypotension, partial or complete airway obstruction, atypical snoring, and death.

In case of oversdosage the foremost priority is the maintenance of a patent and protected airway with the provision of assisted ventilation if necessary. Supportive measures such as IV fluids, supplemental oxygen, and vasopressors may be used to manage circulatory shock. Advanced life support may be necessary in the case of cardiac arrest or arrhythmias. Opioid antagonists such as naloxone may be used to reverse the respiratory and circulatory effects of hydrocodone. Emergency monitoring is still required after naloxone administration as the opioid effects may reappear. Additionally, if used in an opioid tolerant patient, naloxone may produce opioid withdrawal symptoms.

Patients experiencing and overdose may present with headache, hypertension, reflex bradycardia, tingling limbs, cardiac arrhythmias, and a feeling of fullness in the head. Overdose may be treated by supportive care and discontinuing phenylephrine, chronotropic medications, and vasodilators. Subcutaneous phentolamine may be used to treat tissue extravasation.

Precaution

Chlorpheniramine may produce mild sedation and it is advised that patients under continuous treatment should avoid operating machinery. Not recommended during pregnancy & lactation.

Interaction

Alcohol, CNS depressants, anticholinergic drugs, MAOIs.

Volume of Distribution

The apparent volume of distribution ranges widely in published literature. The official FDA labeling reports a value of 402 L. Pharmacokinetic studies report values from 210-714 L with higher values associated with higher doses or single dose studies and lower values associated with lower doses and multiple dose studies. Hydrocodone has been observed in human breast milk at levels equivalent to 1.6% of the maternal dosage. Only 12 of the 30 women studied had detectable concentrations of hydromorphone at mean levels of 0.3 mcg/kg/day.

The volume of distribution of phenylephrine is 340L.

Elimination Route

Well absorbed in the gastrointestinal tract.

The absolute bioavailability of hydrocodone has not been characterized due to lack of an IV formulation. The liquid formulations of hydrocodone have a Tmax of 0.83-1.33 h. The extended release tablet formulations have a Tmax of 14-16 h. The Cmax remains dose proportional over the range of 2.5-10 mg in liquid formulations and 20-120 mg in extended release formulations. Administration with food increases Cmax by about 27% while Tmax and AUC remain the same. Administration with 40% ethanol has been observed to increase Cmax 2-fold with an approximate 20% increase in AUC with no change in Tmax. 20% alcohol produces no significant effect.

Phenylephrine is 38% orally bioavailable. Clinically significant systemic absorption of ophthalmic formulations is possible, especially at higher strengths and when the cornea is damaged.

Half Life

21-27 hours

The half-life of elimination reported for hydrocodone is 7-9 h.

Intravenous phenylephrine has an effective half life of 5 minutes and an elimination half life of 2.5 hours.

Clearance

Official FDA labeling reports an apparent clearance of 83 L/h. Pharmacokinetic studies report values ranging from 24.5-58.8 L/h largely dependent on CYP2D6 metabolizer status.

Phenylephrine has an average clearance of 2100mL/min.

Elimination Route

Most hydrocodone appears to be eliminated via a non-renal route as renal clearance is substantially lower than total apparent clearance. Hepatic metabolism may account for a portion of this, however the slight increase in serum concentration and AUC seen in hepatic impairment indicates a different primary route of elimination.

86% of a dose of phenylephrine is recovered in the urine with 16% as the unmetabolized drug, 57% as the inactive meta-hydroxymendelic acid, and 8% as inactive sulfate conjugates.

Pregnancy & Breastfeeding use

Pregnancy Category B. Either animal-reproduction studies have not demonstrated a foetal risk but there are no controlled studies in pregnant women or animal-reproduction studies have shown an adverse effect (other than a decrease in fertility) that was not confirmed in controlled studies in women in the 1st trimester (and there is no evidence of a risk in later trimesters).

Contraindication

There is no definite contraindication to therapy. It should be used with caution in epilepsy, prostatic hypertrophy, glaucoma and hepatic disease. The ability to drive or operate machinery may be impaired.

Innovators Monograph

You find simplified version here B-Tuss


*** Taking medicines without doctor's advice can cause long-term problems.
Share