Calplus (elder)

Calplus (elder) Uses, Dosage, Side Effects, Food Interaction and all others data.

Calcium gluconate is used to prevent or treat negative calcium balance. It also helps facilitate nerve and muscle performance as well as normal cardiac function.

Calcium Gluconate is the gluconate salt of calcium. An element or mineral necessary for normal nerve, muscle, and cardiac function, calcium as the gluconate salt helps to maintain calcium balance and prevent bone loss when taken orally. This agent may also be chemopreventive for colon and other cancers.

Calcium is used to prevent or treat negative calcium balance. It also helps facilitate nerve and muscle performance as well as normal cardiac function. Bone mineral component; cofoactor in enzymatic reactions, essential for neurotransmission, muscle contraction, and many signal transduction pathways.

Both components of calcium lactate, calcium ion and lactic acid, play essential roles in the human body as a skeletal element an energy source, respectively .

Trade Name Calplus (elder)
Generic Calcium Lactate + Calcium Gluconate
Weight 250mg
Type Syrup
Therapeutic Class
Manufacturer Elder Pharmaceuticals Ltd
Available Country India
Last Updated: September 19, 2023 at 7:00 am
Calplus (elder)
Calplus (elder)

Uses

Calcium Gluconate is used for Antidote in severe hypermagnesaemia, Severe hyperkalaemia, Hypocalcaemic tetany, Severe acute hypocalcaemia, Hypocalcaemia and calcium deficiency states

Calcium Lactate is used for heartburn, calcium supplement, calcium deficiencies.

Calplus (elder) is also used to associated treatment for these conditions: Bone and tooth decay, Bone and tooth growth, Calcium Deficiency, Hypocalcemia, Nutritional Rickets, Osteomalacia, Osteoporosis, Otospongiosis, Postmenopausal Osteoporosis, Vitamin D Insufficiency, Vitamin D Resistant RicketsCalcium Deficiency

How Calplus (elder) works

Calcium is essential for the functional integrity of the nervous, muscular, and skeletal systems. It plays a role in normal cardiac function, renal function, respiration, blood coagulation, and cell membrane and capillary permeability. Also, calcium helps to regulate the release and storage of neurotransmitters and hormones, the uptake and binding of amino acids, absorption of vitamin B 12, and gastrin secretion. The major fraction (99%) of calcium is in the skeletal structure primarily as hydroxyapatite, Ca 10(PO 4) 6(OH) 2; small amounts of calcium carbonate and amorphous calcium phosphates are also present. The calcium of bone is in a constant exchange with the calcium of plasma. Since the metabolic functions of calcium are essential for life, when there is a disturbance in the calcium balance because of dietary deficiency or other causes, the stores of calcium in bone may be depleted to fill the body's more acute needs. Therefore, on a chronic basis, normal mineralization of bone depends on adequate amounts of total body calcium.

In aqueous environments such as the gastrointestinal (GI) tract, calcium lactate will dissociate into calcium cation and lactic acid anions, the conjugate base of lactic acid. Lactic acid is a naturally-occurring compound that serves as fuel or energy in mammals by acting as an ubiquitous intermediate in the metabolic pathways . Lactic acid diffuses through the muscles and is transported to the liver by the bloodstream to participate in gluconeogenesis .

Dosage

Calplus (elder) dosage

Intravenous: Antidote in severe hypermagnesaemia, Severe hyperkalaemia:

  • Adult: 10 ml of 10% calcium gluconate solution over 2 minutes, repeated every 10 minutes if needed.
  • Child: Neonate and 1 mth-18 yr: 0.5 ml/kg of 10% calcium gluconate solution as a single dose. Max: 20 ml of 10% calcium gluconate solution.

Intravenous: Hypocalcaemic tetany, Severe acute hypocalcaemia:

  • Adult: 2.25 mmol by slow IV inj over 10 minutes, followed by 58-77 ml of 10% calcium gluconate solution in 0.5-1 L of 5% dextrose solution as continuous IV infusion.
  • Child: Neonate and 1 mth-18 yr: 0.5 ml/kg of 10% calcium gluconate solution as a single dose. Max: 20 ml of 10% calcium gluconate solution.

19-50 year: 1,000 mg elemental Calcium Lactate per day.

>50 year: 1,200 mg elemental Calcium Lactate per day.

Side Effects

GI irritation; soft-tissue calcification, skin sloughing or necrosis after IM/SC inj. Hypercalcaemia characterised by anorexia, nausea, vomiting, constipation, abdominal pain, muscle weakness, mental disturbances, polydipsia, polyuria, nephrocalcinosis, renal calculi; chalky taste, hot flushes and peripheral vasodilation.

Gl discomfort e.g. nausea, vomiting, constipation; bradycardia, arrhythmias. Dry mouth, increased thirst or increased urination. Mental confusion, milk-alkali syndrome.

Toxicity

Infants : LDLo (Intramuscular ) : 10gm/kg ; Effects - Brain and coverings : meningeal changes Infants : TDLo ( Intramuscular ) : 143 mg/kg ; Effects - Dermatits Mouse: LD50 ( intravenous ) : 950mg/kg Mouse : LDLo (Oral ) : 10gm/kg

The LDLo of calcium lactate pentahydrate following intravenous administration in mouse is 140 mg/kg .

Precaution

Impaired renal function; cardiac disease; hypercalcaemia-associated diseases, e.g. sarcoidosis; other malignancies. Pregnancy.

Sarcoidosis; history of nephrolithiasis. Avoid IV admin of calcium in patients on cardiac glycosides. Increased risk of hypercalcaemia and hypercalciuria in hypoparathyroid patients receiving high doses of vitamin D. Caution when used in patients with history of kidney stones. Patients should be advised to administer vitamin D concurrently to optimise calcium absorption. Pregnancy.

Interaction

Co-administration of high calcium doses with thiazide diuretics may result in milk-alkali syndrome and hypercalcaemia. May potentiate digoxin toxicity. Decreases effects of calcium-channel blockers. Enhanced absorption with calcitriol (a vitamin D metabolite).

May reduce the efficacy of calcium-channel blockers. Concurrent admin of IV calcium salt with cardiac glycosides may lead to serious adverse events. Increased risk of hypercalcaemia when used with thiazide diuretics. May reduce absorption of tetracycline, alendronate, atenolol, iron, quinolone antibiotics, sodium fluoride and zinc.

Volume of Distribution

Not available

The majority of calcium absorbed (99%) is stored in the skeleton and teeth for structural integrity .

Elimination Route

Approximately one-fifth to one-third of orally administered calcium is absorbed in the small intestine, depending on presence of vitamin D metabolites, pH in lumen, and on dietary factors, such as calcium binding to fiber or phytates. Calcium absorption is increased when a calcium deficiency is present or when a patient is on a low-calcium diet. In patients with achlorhydria or hypochlorhydria, calcium absorption, especially with the carbonate salt, may be reduced.

In order to be absorbed, calcium must be in its freely soluble form (Ca2+) or bound to a soluble organic molecule. Calcium absorption mainly occurs at the duodenum and proximal jejunum due to more acidic pH and the abundance of the calcium binding proteins . The mean calcium absorption is about 25% of calcium intake (range is 10 – 40%) in the small intestine, and is mediated by both passive diffusion and active transport .

Half Life

No pharmacokinetic data available.

Clearance

No pharmacokinetic data available.

Elimination Route

Renal (20%) - The amount excreted in the urine varies with degree of calcium absorption and whether there is excessive bone loss or failure of renal conservation. Fecal (80%) - Consists mainly of nonabsorbed calcium, with only a small amount of endogenous fecal calcium excreted.

Following oral administration to a human volunteer, 20 to 30% of a dose of lactic acid of up to 3000 mg was excreted via the urine during a period of 14 hours .

Pregnancy & Breastfeeding use

Pregnancy Category C. Either studies in animals have revealed adverse effects on the fetus (teratogenic or embryocidal or other) and there are no controlled studies in women or studies in women and animals are not available. Drugs should be given only if the potential benefit justifies the potential risk to the fetus.

Pregnancy Category-C. Animal reproduction studies have shown an adverse effect on the fetus and there are no adequate and well-controlled studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks

Contraindication

Patients with calcium renal calculi or history of renal calculi. Conditions associated with hypercalcaemia and hypercalciuria.

Conditions associated with hypercalcaemia and hypercalciuria.

Innovators Monograph

You find simplified version here Calplus (elder)


*** Taking medicines without doctor's advice can cause long-term problems.
Share