Calthrox (+Zinc Sulfate)

Calthrox (+Zinc Sulfate) Uses, Dosage, Side Effects, Food Interaction and all others data.

Erythromycin Lotion is a bacteriostatic macrolide antibiotic, but may be bactericidal in high concentrations. Although the mechanism by which topical erythromycin acts in reducing inflammatory lessions of Acne vulgaris is unknown, it is presummable due to its antibiotic action.

Erythromycin tablet inhibits microsomal protein synthesis in susceptible organisms by inhibiting the translocation process. Specific binding to the 50S subunit or 70S ribosome occurs in these organisms but there is no binding to the stable 80S mammalian ribosome. Erythromycin is active against many Grampositive bacteria, some Gram-negative bacteria and against mycoplasmas and chlamydia.

Macrolides, such as erythromycin, stop bacterial growth by inhibiting protein synthesis and translation, treating bacterial infections. Erythromycin does not exert effects on nucleic acid synthesis. This drug has been shown to be active against most strains of the following microorganisms, effectively treating both in vitro and clinical infections. Despite this, it is important to perform bacterial susceptibility testing before administering this antibiotic, as resistance is a common issue that may affect treatment.

A note on antimicrobial resistance, pseudomembranous colitis, and hepatotoxicity

Zinc sulfate is the inorganic compound with the formula ZnSO4 and historically known as "white vitriol". It is on the World Health Organization's List of Essential Medicines, a list of the most important medication needed in a basic health system.

Zinc has been identified as a cofactor for over 70 different enzymes, including alkaline phosphatase, lactic dehydrogenase and both RNA and DNA polymerase. Zinc facilitates wound healing, helps maintain normal growth rates, normal skin hydration and the senses of taste and smell.

Trade Name Calthrox (+Zinc Sulfate)
Generic Erythromycin + Zinc Sulfate
Type
Therapeutic Class
Manufacturer
Available Country India
Last Updated: September 19, 2023 at 7:00 am
Calthrox (+Zinc Sulfate)
Calthrox (+Zinc Sulfate)

Uses

Erythromycin tablet is highly effective in the treatment of a wide variety of clinical infections, such as

  • Upper respiratory tract infections: Tonsillitis, peritonsillar abscess, pharyngitis, laryngitis, sinusitis, and secondary infections in cold and influenza.
  • Lower respiratory tract infections: Tracheitis, acute and chronic bronchitis. Mycoplasma pneumoniae (lobar pneumonia, broncho pneumonia, primary atypical pneumoniae), bronchiectasis.
  • Skin and soft tissue infections: Boils and carbuncles, paronychia, abscesses, pustular acne, impetigo, cellulitis, furuncolosis, erythrasma.
  • Veneral infections: Non-specific urethritis, syphilis (if the patient is allergic to penicillin).
  • Gastro-intestinal infections: Cholecystitis, Staphylococcal enterocolitis, infectious diarrhoea, & cholera.
  • Ear and oral infections: 0titis media and otitis externa, gingivitis, dental abscesses.
  • Prophylaxis: Pre-operative and post-operative, trauma, burns, rheumatic fever.
  • Other infections: Diphtheria, whooping cough.

For topical treatment of acne, pimples & bacterial skin infections susceptible to Erythromycin

Zinc sulfate is a drug used to replenish low levels of zinc or prevent zinc deficiency, or to test for zinc deficiency.

This medication is a mineral used to treat or prevent low levels of zinc alone and together with oral rehydration therapy (ORT). It is also used as a topical astringent. Zinc Sulfate Injection, USP is indicated for use as a supplement to intravenous solutions given for TPN.

Calthrox (+Zinc Sulfate) is also used to associated treatment for these conditions: Acne, Acne Vulgaris, Acute Otitis Media caused by Haemophilus Influenzae, Acute pelvic inflammatory disease caused by Neisseria Gonorrheae Infection, Bacterial Infections, Chancroid, Chlamydia Trachomatis, Chlamydial ophthalmia neonatorum, Community Acquired Pneumonia (CAP), Diphtheria, Erythrasma, Gastroparesis, Granuloma Inguinale, Intestinal amebiasis caused by entamoeba histolytica, Legionella Pneumophila Infections, Listeria infection, Lower Respiratory Tract Infection (LRTI), Lymphogranuloma Venereum, Nongonococcal urethritis, Ophthalmia neonatorum (gonococcal), Pertussis, Postoperative Infections, Primary Syphilis, Respiratory Tract Infections (RTI), Staphylococcal Skin Infections, Syphilis, Upper Respiratory Tract Infection, Ureaplasma urethritis, Whooping Cough, Inflammatory papular lesions, Mild Acne vulgaris, Moderate Acne vulgaris, Predominant skin comedones, papules and pustules, Prophylaxis of Rheumatic fever, Pustular lesions, Skin and skin-structure infections, Skin and subcutaneous tissue bacterial infections caused by streptococcus pyogenes, Superficial ocular infectionsDry Eyes, Local itching, Localized pain, Localized swelling, Nutritional supplementation

How Calthrox (+Zinc Sulfate) works

In order to replicate, bacteria require a specific process of protein synthesis, enabled by ribosomal proteins. Erythromycin acts by inhibition of protein synthesis by binding to the 23S ribosomal RNA molecule in the 50S subunit of ribosomes in susceptible bacterial organisms. It stops bacterial protein synthesis by inhibiting the transpeptidation/translocation step of protein synthesis and by inhibiting the assembly of the 50S ribosomal subunit. This results in the control of various bacterial infections. The strong affinity of macrolides, including erythromycin, for bacterial ribosomes, supports their broad‐spectrum antibacterial activities.

Zinc inhibits cAMP-induced, chloride-dependent fluid secretion by inhibiting basolateral potassium (K) channels, in in-vitro studies with rat ileum. This study has also shown the specificity of Zn to cAMP-activated K channels, because zinc did not block the calcium (Ca)-mediated K channels. As this study was not performed in Zn-deficient animals, it provides evidence that Zn is probably effective in the absence of Zn deficiency. Zinc also improves the absorption of water and electrolytes, improves regeneration of the intestinal epithelium, increases the levels of brush border enzymes, and enhances the immune response, allowing for a better clearance of the pathogens.

Dosage

Calthrox (+Zinc Sulfate) dosage

Adult and Child over 8 years: 250-500 mg every 6 hours or 0.5-1 gm every 12 hours. This may be increased up to 4 gm daily according to severity of infections.

Child of 2-8 years: 250 mg every 6 hours, doses doubled for severe infections.

Child up to 2 years: 125 mg every 6 hours.

Neonates: 30 to 45 mg/kg daily in 3 divided doses.

Elderly: Same as for adults.If administration on a twice daily schedule is desirable, one half of the total daily dose may be given every 12 hours, one hour before meal.

Amoebic dysentery:

  • Adult: 250 - 500 mg four times daily for 10 - 14 days.
  • Children: 30 - 50 mg/kg/day in divided doses for 10 - 14 days.

Pertussis: 30 - 50 mg/kg/day in divided doses for 5-14 days depending upon eradication of a positive culture.Streptococcal infections: In the treatment of group A beta haemolytic streptococcal infections, therapeutic dosage of Erythromycin should be administered for at least 10 days.

Acne: The usual dosage regimen of erythromycin in the treatment of acne is 500 mg twice daily for 3 months. Then the dose is to be reduced to 250 mg twice daily for another 3 months.

Early Syphilis: 500 mg 4 times daily for 14 days.Uncomplicated genital Chlamydia nongonococcal Urethritis: 500 mg twice daily for 14 days.

Prophylaxis: In continuous prophylaxis of streptococcal infections in person with a rheumatic heart disease, the dosage is 250 mg twice daily.

When Erythromycin is used prior to surgery to prevent endocarditis caused by alpha haemolytic streptococci, a recommended schedule:

  • For children: 20 mg/Kg 1.5 - 2 hours pre-operatively and 10 mg/kg every 6 hours for 8 doses post-operatively.
  • For adults:The dose is 1 g, 1.5 - 2 hours pre-operatively and 500 mg every 6 hours for 8 doses post-operatively.

Topical: Apply to the affected areas in the morning and evening. Before applying thoroughly wash with warm water and soap, rinse and pat dry all areas to be treated. Apply with applicator. Wash hands after use.

Direction for reconstitution of suspension: Shake the bottle to loosen powder. Add 60 ml (12 measuring spoonful) of boiled and cooled water to the dry powder of the bottle. For ease of preparation, add water to the bottle in two proportions. Shake well after each addition until all the powder is in suspension.

Note: Shake the suspension well before each use. Keep the bottle tightly closed. The reconstituted suspension should be stored in a cool and dry place, preferably in refrigerator and unused portion should be discarded after 7 days.

Side Effects

Generally erythromycin is well tolerated and serious adverse effects are rare. Side-effects are gastrointestinal and are dose-related. They include nausea, vomiting, abdominal pain, diarrhea and anorexia. Mild allergic reactions, such as urticaria and skin rashes have occurred. Serious allergic reactions, including anaphylaxis may occur.

Toxicity

LD50

The oral LD50 of erythromycin in rats is 9272 mg/kg.

Overdose information

Symptoms of overdose may include diarrhea, nausea, stomach cramps, and vomiting. Erythromycin should immediately be discontinued in cases of overdose. Rapid elimination of unabsorbed drug should be attempted. Supportive measures should be initiated. Erythromycin is not adequately removed by peritoneal dialysis or hemodialysis.

Human : TDLo ( Oral) 45mg/kg/7D-C : Normocytic anemia, pulse rate increase without fall inBP Human: TDLo (oral) 106mg/kg : Hypermotylity, diarrhea Mouse ; LD50 Oral : 245mg/kg Mouse : LD50 : subcutaneous : 781mg/kg

Precaution

Lotion/Cream: For external use only. Keep away from eyes, nose, mouth and other mucous membrane.

Use of antibiotics (especially prolonged or repeated therapy) may result in bacterial or fungal overgrowth of non-susceptible organisms. Such overgrowth may lead to a secondary infection. Take appropriate measures if superinfections occur.

Tablet: Since Erythromycin is metabolized principally by the liver, caution should be exercised when erythromycin is administered to patients with impaired hepatic function. There have been reports of hepatic dysfunction with or without jaundice occurring in patients taking oral Erythromycin.

Interaction

Theophylline: The use of Erythromycin in patients who are receiving concomitant high doses of theophylline may be associated with an increase in serum theophylline and potential theophylline toxicity. If symptoms of toxicity develop, the dose of theophylline should be reduced.

Digoxin: Concomitant administration of Erythromycin and Digoxin has been reported to result in elevated digoxin serum levels.

Clindamycin interacts with Erythromycin

Volume of Distribution

Erythromycin is found in most body fluids and accumulates in leucocytes and inflammatory liquid. Spinal fluid concentrations of erythromycin are low, however, the diffusion of erythromycin through the blood-brain barrier increases in meningitis, likely due to the presence of inflamed tissues which are easily penetrated. Erythromycin crosses the placenta.

After absorption zinc is bound to protein metallothionein in the intestines. Zinc is widely distributed throughout the body. It is primarily stored in RBCs, WBCs, muscles, bones, Skin, Kidneys, Liver, Pancreas, retina, and prostate.

Elimination Route

Orally administered erythromycin is readily absorbed. Food intake does not appear to exert effects on serum concentrations of erythromycin. Some interindividual variation exists in terms of erythromycin absorption, which may impact absorption to varying degrees. The Cmax of erythromycin is 1.8 mcg/L and the Tmax is 1.2 hours. The serum AUC of erythromycin after the administration of a 500mg oral dose was 7.3±3.9 mg.h/l in one pharmacokinetic study. Erythromycin is well known for a bioavailability that is variable (18-45%) after oral administration and its susceptibility to broken down under acidic conditions.

Approximately 20 to 30% of dietary zinc is absorbed, primarily from the duodenum and ileum. The amount absorbed is dependent on the bioavailability from food. Zinc is the most bioavailable from red meat and oysters. Phytates may impair absorption by chelation and formation of insoluble complexes at an alkaline pH. After absorption, zinc is bound in the intestine to the protein metallothionein. Endogenous zinc can be reabsorbed in the ileum and colon, creating an enteropancreatic circulation of zinc.

Half Life

The elimination half-life of oral erythromycin was 3.5 hours according to one study and ranged between 2.4-3.1 hours in another study. Repetitive dosing of erythromycin leads to increased elimination half-life.

3 hours

Clearance

The clearance of erythromycin in healthy subjects was 0.53 ± 0.13 l/h/kg after a 125mg intravenous dose. In a clinical study of healthy patients and patients with liver cirrhosis, clearance of erythromycin was significantly reduced in those with severe liver cirrhosis. The clearance in cirrhotic patients was 42.2 ± 10.1 l h–1 versus 113.2 ± 44.2 l h-1 in healthy patients.

Elimination Route

In patients with normal liver function, erythromycin concentrates in the liver and is then excreted in the bile.Under 5% of the orally administered dose of erythromycin is found excreted in the urine. A high percentage of absorbed erythromycin is not accounted for, but is likely metabolized.

Primarily fecal (approximately 90%); to a lesser extent in the urine and in perspiration.

Pregnancy & Breastfeeding use

Safety for use during pregnancy has not been established. Use only when the potential benefits outweigh potential hazards to the fetus.

Erythromycin is excreted in breast milk. Exercise caution when administering to a nursing mother.

Contraindication

Erythomycin is contraindicated in patients with a known hypersensitivity to this drug.

Special Warning

Safety and effectiveness in children less than 12 years have not been established.

Acute Overdose

In case of overdosage, Erythromycin should be discontinued. Overdosage should be handled with the prompt elimination of unabsorbed drug and all other appropriate measures should be instituted. Erythromycin is not removed by peritoneal dialysis or haemodialysis.

Storage Condition

Keep at room temperature and away from light.

Innovators Monograph

You find simplified version here Calthrox (+Zinc Sulfate)


*** Taking medicines without doctor's advice can cause long-term problems.
Share