Capsfenac Pak
Capsfenac Pak Uses, Dosage, Side Effects, Food Interaction and all others data.
Although the precise mechanism of action of Capsaicin is not fully understood, current evidence suggests that Capsaicin exerts an analgesic effect by depleting and preventing reaccumulation of Substance P in peripheral sensory neurons. Substance P is thought to be the principal chemomediator of pain impulses from the periphery to the central nervous system.
Capsaicin is a TRPV1 receptor agonist. TRPV1 is a trans-membrane receptor-ion channel complex activated by temperatures higher than 43 degrees Celsius, pH lower than 6, and endogenous lipids. When activated by a combination of these factors, the channel can transiently open and initiate depolarization due to the influx of calcium and sodium ions. Because TRPV1 is commonly expressed in A-delta and mostly C fibers, depolarization results in action potentials which send impulses to the brain and spinal cord. These impulses result in capsaicin effects of warming, tingling, itching, stinging, or burning. Capsaicin also causes more persistent activation of these receptors compared to the environmental agonists, resulting in a loss of response to many sensory stimuli, described as "defunctionalization". Capsaicin is associated with many enzymatic, cytoskeletal, and osmotic changes, as well as disruption of mitochondrial respiration, impairing nociceptor function for extended periods of time.
Diclofenac Eye Drops contains Diclofenac Sodium, a potent non-steroidal anti-inflammatory drug with analgesic property. Diclofenac Sodium produces anti-inflammatory effect by inhibiting cyclooxygenase activity with a reduction in the tissue prostaglandin ( such as PgE2 and Pg F2α) .
Diclofenac reduces inflammation and by extension reduces nociceptive pain and combats fever. It also increases the risk of developing a gastrointestinal ulcer by inhibiting the production of protective mucus in the stomach.
Trade Name | Capsfenac Pak |
Generic | Capsaicin + diclofenac |
Weight | 0.025% + 1.5%, |
Type | Topical Kit, Topical, Kit |
Therapeutic Class | |
Manufacturer | |
Available Country | United States |
Last Updated: | September 19, 2023 at 7:00 am |
Uses
Capsaicin is indicatd for- Rheumatoid arthritis, Osteoarthritis, Pain due to diabetic neuropathy, Joint pain, Post-herpetic neuralgia, Post-surgical neuropathic pain, Nerve Pain, Back pain, Muscle pain, Fibromyalgia, Bursitis, Pruritis (itching)
Diclofenac Sodium ophthalmic preparation is used for-
- Inhibition of miosis during cataract surgery.
- Post-operative inflammation after cataract surgery and other ocular surgical procedures.
- Pre-operative and post-operative prevention of cystoid macular edema (CME) associated with lens extraction & intraocular lens implantation.
- Post-traumatic inflammation in penetrating and non- penetrating wounds (as an adjuvant to local anti-infective therapy).
- Non-infected chronic conjunctivitis, keratoconjunctivitis.
Capsfenac Pak is also used to associated treatment for these conditions: Arthritis, Back Pain Lower Back, Backache, Bursitis, Contusions, Inflammatory Reaction caused by Rheumatism, Muscle Cramps, Musculoskeletal Pain, Osteoarthritis (OA), Periarthritis, Post-Herpetic Neuralgia (PHN), Rheumatic Pain, Soft Tissue Injury, Tendinitis, Acute nonspecific tenosynovitisActinic Keratosis (AK), Acute Arthritis, Acute Gouty Arthritis, Acute Migraine, Acute Musculoskeletal Pain, Ankylosing Spondylitis (AS), Common Cold, Fever, Gouty Arthritis, Inflammation, Inflammatory Disease of the Oral Cavity, Inflammatory Disease of the throat, Inflammatory Reaction of the Nerve, Joint Pain, Juvenile Idiopathic Arthritis (JIA), Menstrual Distress (Dysmenorrhea), Muscle Inflammation, Ocular Inflammation, Operation site inflammation, Osteoarthritis (OA), Osteoarthritis of the Knee, Pain, Pain, Nerve, Pericarditis, Photophobia, Postoperative pain, Primary Dysmenorrhoea, Radicular Pain, Rheumatic Pain, Rheumatism, Rheumatoid Arthritis, Seasonal Allergic Conjunctivitis, Soreness, Muscle, Spinal pain, Tendon pain, Vertebral column pain, Acute Musculoskeletal injury, Acute, moderate, severe Pain, Inflammatory, Localized soft tissue rheumatism, Mild to moderate joint pain, Mild to moderate pain, Minor pain, Perioperative miosis
How Capsfenac Pak works
Capsaicin has been shown to reduce the amount of substance P associated with inflammation - however this is not believed to be its main mechanism in the relief of pain . Capsaicin's mechanism of action is attributed to "defunctionalization" of nociceptor fibers by inducing a topical hypersensitivity reaction on the skin. This alteration in pain mechanisms is due to many of the following: temporary loss of membrane potential, inability to transport neurotrophic factors leading to altered phenotype, and reversible retraction of epidermal and dermal nerve fiber terminals.
Diclofenac inhibits cyclooxygenase-1 and -2, the enzymes responsible for production of prostaglandin (PG) G2 which is the precursor to other PGs. These molecules have broad activity in pain and inflammation and the inhibition of their production is the common mechanism linking each effect of diclofenac.
PGE2 is the primary PG involved in modulation of nociception. It mediates peripheral sensitization through a variety of effects. PGE2 activates the Gq-coupled EP1 receptor leading to increased activity of the inositol trisphosphate/phospholipase C pathway. Activation of this pathway releases intracellular stores of calcium which directly reduces action potential threshold and activates protein kinase C (PKC) which contributes to several indirect mechanisms. PGE2 also activates the EP4 receptor, coupled to Gs, which activates the adenylyl cyclase/protein kinase A (AC/PKA) signaling pathway. PKA and PKC both contribute to the potentiation of transient receptor potential cation channel subfamily V member 1 (TRPV1) potentiation, which increases sensitivity to heat stimuli. They also activate tetrodotoxin-resistant sodium channels and inhibit inward potassium currents. PKA further contributes to the activation of the P2X3 purine receptor and sensitization of T-type calcium channels. The activation and sensitization of depolarizing ion channels and inhibition of inward potassium currents serve to reduce the intensity of stimulus necessary to generate action potentials in nociceptive sensory afferents. PGE2 act via EP3 to increase sensitivity to bradykinin and via EP2 to further increase heat sensitivity. Central sensitization occurs in the dorsal horn of the spinal cord and is mediated by the EP2 receptor which couples to Gs. Pre-synaptically, this receptor increases the release of pro-nociceptive neurotransmitters glutamate, CGRP, and substance P. Post-synaptically it increases the activity of AMPA and NMDA receptors and produces inhibition of inhibitory glycinergic neurons. Together these lead to a reduced threshold of activating, allowing low intensity stimuli to generate pain signals. PGI2 is known to play a role via its Gs-coupled IP receptor although the magnitude of its contribution varies. It has been proposed to be of greater importance in painful inflammatory conditions such as arthritis. By limiting sensitization, both peripheral and central, via these pathways NSAIDs can effectively reduce inflammatory pain.
PGI2 and PGE2 contribute to acute inflammation via their IP and EP2 receptors. Similarly to β adrenergic receptors these are Gs-coupled and mediate vasodilation through the AC/PKA pathway. PGE2 also contributes by increasing leukocyte adhesion to the endothelium and attracts the cells to the site of injury. PGD2 plays a role in the activation of endothelial cell release of cytokines through its DP1 receptor. PGI2 and PGE2 modulate T-helper cell activation and differentiation through IP, EP2, and EP4 receptors which is believed to be an important activity in the pathology of arthritic conditions. By limiting the production of these PGs at the site of injury, NSAIDs can reduce inflammation.
PGE2 can cross the blood-brain barrier and act on excitatory Gq EP3 receptors on thermoregulatory neurons in the hypothalamus. This activation triggers an increase in heat-generation and a reduction in heat-loss to produce a fever. NSAIDs prevent the generation of PGE2 thereby reducing the activity of these neurons.
Dosage
Capsfenac Pak dosage
18 years of age and older:Apply a thin film of Capsaicin cream to affected area 3 to 4 times daily. A burning sensation may occur upon application, but generally disappears with regular use. Application schedules of 3 to 4 times a day for 2 weeks provides optimum pain relief.
Ophthalmic (Adult)-
- Postoperative ocular inflammation: Instill into the appropriate eye 4 times daily starting 24 hr after surgery for up to 28 days.
- Inflammation and discomfort after strabismus surgery: Instill 1 drop 4 times daily for the 1st wk; then tid in the 2nd wk, bid in the 3rd wk, and as required for the 4th wk.
- Pain and discomfort after radial keratotomy: Instill 1 drop before surgery followed by 1 drop immediately after surgery, and then 1 drop 4 times daily for up to 2 days.
- Pain after accidental trauma: Instill 1 drop 4 times daily for up to 2 days.
- Control of inflammation after argon laser trabeculoplasty:Instill 1 drop 4 times during the 2 hr before procedure followed by 1 drop 4 times daily, up to 7 days after procedure.
- Prophylaxis of intra-operative miosis: Instill into appropriate eye 4 times w/in 2 hr before surgery.
- Post-photorefractive keratectomy pain:Instill into the affected eye twice, an hr before surgery, then 1 drop twice at 5-min intervals immediately after surgery, then every 2-5 hr while awake for up to 24 hr.
- Seasonal allergic conjunctivitis:Instill 1 drop before surgery followed by 1 drop immediately after surgery, and then 1 drop 4 times daily for up to 2 days.
Side Effects
Capsaicin may cause transient burning on application. This burning is observed more frequently when the application schedules are more than 3-4 times daily. The burning can be enhanced if too much cream is used and if it is applied just before or after a bath or shower.
Mild to moderate burning sensation in 5-15% patients which is transient in nature and almost never necessitated discontinuation of treatment. Other less common side-effects are sensitivity to light, bad taste, feeling of pressure, allergic reactions etc.
Toxicity
Acute oral LD50 and dermal LD50 in mouse are 47.2 mg/kg and >512 mg/kg, respectively . Capsaicin is shown to be mutagenic for bacteria and yeast .
Capsaicin can cause serious irritation, conjunctivitis and lacrimation via contact with eyes. It induces a burning sensation and pain in case of contact with eyes and skin. As it is also irritating to the respiratory system, it causes lung irritation and coughing as well as bronchoconstriction. Other respiratory effects include laryngospasm, swelling of the larynx and lungs, chemical pneumonitis,respiratory arrest and central nervous system effects such as convulsions and excitement . In case of ingestion, gastrointestinal tract irritation may be observed along with a sensation of warmth or painful burning . Symptoms of systemic toxicity include disorientation, fear, loss of body motor control including diminished hand-eye coordination, hyperventilation, tachycardia, and pulmonary oedema . Careful early decontamination is recommended and medical intervention should be initiated for any life-threatening symptoms. In case of contact, individual must be removed from the source of exposure and the contacted skin and mucous membranes should be thoroughly washed with copious amounts of water .
Symptoms of overdose include lethargy, drowsiness, nausea, vomiting, and epigastric pain, and gastrointestinal bleeding. Hypertension, acute renal failure, respiratory depression and coma occur rarely. In case of overdose, provide supportive care and consider inducing emesis and administering activated charcoal if overdose occurred less than 4 hours prior.
Precaution
Capsaicin cream should not be applied to broken or irritated skin. Applied area should not be tightly bandaged. Do not get on mucous membranes and into eyes or on contact lenses. If this occurs, rinse the affected area thoroughly with water. Do not apply the cream on the heat treated area as this may increase the burning sensation. In case of accidental ingestion, seek physician advice immediately.
Diclofenac eye drops may mask the signs of infection. So physicians should be alert to the development of infections in patients receiving the drug. During prolonged use, it is recommended that physicians conduct periodic examinations of the eye, including measurement of the intraocular pressure. Contact lenses should not be worn during treatment.
Interaction
No drug interaction is reported. There should be at least 5 minutes interval when another ophthalmic solution (e.g., steroid) is given.
Volume of Distribution
Diclofenac has a total volume of distribution of 5-10 L or 0.1-0.2 L/kg. The volume of the central compartment is 0.04 L/kg. Diclofenac distributes to the synovial fluid reaching peak concentration 2-4h after administration. There is limited crossing of the blood brain barrier and cerebrospinal fluid concentrations only reach 8.22% of plasma concentrations. Doses of 50 mg delivered via intramuscular injection produced no detectable diclofenac concentrations in breast milk, however metabolite concentrations were not investigated. Diclofenac has been shown to cross the placenta in mice and rats but human data is unavailable.
Elimination Route
Oral: Following oral administration, capsaicin may be absorbed by a nonactive process from the stomach and whole intestine with an extent of absorption ranging between 50 and 90%, depending on the animal . The peak blood concentration can be reached within 1 hour following administration . Capsaicin may undergo minor metabolism in the small intestine epithelial cells post-absorption from the stomach into the small intestines. While oral pharmacokinetics information in humans is limited, ingestion of equipotent dose of 26.6 mg of pure capsaicin, capsaicin was detected in the plasma after 10 minutes and the peak plasma concentration of 2.47 ± 0.13 ng/ml was reached at 47.1 ± 2.0 minutes .
Systemic: Following intravenous or subcutaneous administration in animals, the concentrations in the brain and spinal cord were approximately 5-fold higher than that in blood and the concentration in the liver was approximately 3-fold higher than that in blood .
Topical: Topical capsaicin in humans is rapidly and well absorbed through the skin, however systemic absorption following topical or transdermal administration is unlikely . For patients receiving the topical patch containing 179 mg of capsaicin, a population analysis was performed and plasma concentrations of capsaicin were fitted using a one-compartment model with first-order absorption and linear elimination. The mean peak plasma concentration was 1.86 ng/mL but the maximum value observed in any patient was 17.8 ng/mL .
Diclofenac is completely absorbed from the GI tract but likely undergoes significant first pass metabolism with only 60% of the drug reaching systemic circulation unchanged . Many topical formulations are absorbed percutaneous and produce clinically significant plasma concentrations. Absorption is dose proportional over the range of 25-150 mg. Tmax varies between formulations with the oral solution reaching peak plasma concentrations in 10-40min, the enteric coated tablet in 1.5-2h, and the sustained- and extended-release formulations prolonging Tmax even further. Administration with food has no significant effects on AUC but does delay Tmax to 2.5-12h.
Half Life
Following oral ingestion of equipotent dose of 26.6 mg of pure capsaicin, the half life was approximately 24.9 ± 5.0 min . Following topical application of 3% solution of capsaicin, the half-life of capsaicin was approximately 24 h . The mean population elimination half-life was 1.64 h following application of a topical patch containing 179 mg of capsaicin .
The terminal half-life of diclofenac is approximately 2 h, however the apparent half-life including all metabolites is 25.8-33 h.
Clearance
Diclofenac has a plasma clearance 16 L/h.
Elimination Route
It is proposed that capsaicin mainly undergoes renal excretion, as both the unchanged and glucuronide form. A small fraction of unchanged compound is excreted in the feces and urine. In vivo animal studies demonstrates that less than 10 % of an administered dose was found in faces after 48 h .
Diclofenac is mainly eliminated via metabolism. Of the total dose, 60-70% is eliminated in the urine and 30% is eliminated in the feces. No significant enterohepatic recycling occurs.
Pregnancy & Breastfeeding use
The safety of Capsaicin during pregnancy or lactation has not been established in either humans or animals.
The safety of Diclofenac eye drops in pregnancy & lactation has not been established and its use therefore is not recommended unless the potential benefit to the mother outweighs the possible risk to the child.
Contraindication
Capsaicin cream is contraindicated on broken or irritated skin. It is also contraindicated in patients with known hypersensitivity to capsaicin or any of the excipients used in this product.
Hypersensitivity to any of the components Like other non steroidal anti-inflammatory agents, Diclofenac Sodium eye drops is contraindicated in patients in whom attacks of asthma, urticaria or acute rhinitis have been observed following application of acetyl salicylic acid or other cyclo-oxygenase inhibitors
Acute Overdose
Sufficient information on overdose of Capsaicin is not available.
Accidental ingestion of Diclofenac Sodium presents virtually no risk of unwanted effects, since one 5 ml bottle of eye drop solution contains only 5 mg of Diclofenac Sodium, which is equivalent to about 3% of the recommended maximum oral dose for adults.
Storage Condition
Keep at cool and dry place, away form light. Keep out of the reach of children.
Close the bottle immediately after use. Do not use for more than four weeks after opening. Store at room temperature.
Innovators Monograph
You find simplified version here Capsfenac Pak