Cartizests Uses, Dosage, Side Effects and more
vitamin C, the water-soluble vitamin, is readily absorbed from the gastrointestinal tract and is widely distributed in the body tissues. It is believed to be involved in biological oxidations and reductions used in cellular respiration. It is essential for the synthesis of collagen and intracellular material. Vitamin C deficiency develops when the dietary intake is inadequate and when increased demand is not fulfilled. Deficiency leads to the development of well defined syndrome known as scurvy, which is characterized by capillary fragility, bleeding (especially from small blood vessels and the gums), anaemia, cartilage and bone lesions and slow healing of wounds.
Ascorbic Acid (vitamin C) is a water-soluble vitamin indicated for the prevention and treatment of scurvy, as ascorbic acid deficiency results in scurvy. Collagenous structures are primarily affected, and lesions develop in bones and blood vessels. Administration of ascorbic acid completely reverses the symptoms of ascorbic acid deficiency.
Glucosamine is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids. Glucosamine stimulates the production of proteoglycans and increases sulfate uptake by articular cartilage.
The administration of glucosamine, in theory, provides a building block towards the synthesis of glycosaminoglycans, slowing the progression of osteoarthritis and relieving symptoms of joint pain. Studies to this date examining the efficacy of glucosamine sulfate have been inconclusive. Glycosaminoglycans contribute to joint cartilage elasticity, strength, and flexibility. A systematic review of various studies and guidelines determined that modest improvements were reported for joint pain and function in patients taking glucosamine. A consistent joint space narrowing was observed, but with an unclear clinical significance.
Potassium chloride is a major cation of the intracellular fluid. It plays an active role in the conduction of nerve impulses in the heart, brain and skeletal muscle; contraction of cardiac skeletal and smooth muscles; maintenance of normal renal function, acid-base balance, carbohydrate metabolism and gastric secretion.
The potassium ion is in the principle intracellular cation of most body tissues. Potassium ions participate in a number of essential physiological processes including the maintenance of intracellular tonicity, the transmission of nerve impulses, the contraction of cardiac, skeletal and smooth muscle, and the maintenance of normal renal function. The intracellular concentration of potassium is approximately 150 to 160 mEq per liter. The normal adult plasma concentration is 3.5 to 5 mEq per liter. An active ion transport system maintains this gradient across the plasma membrane. Potassium is a normal dietary constituent and under steady-state conditions the amount of potassium absorbed from the gastrointestinal tract is equal to the amount excreted in the urine. The usual dietary intake of potassium is 50 to 100 mEq per day. Potassium depletion will occur whenever the rate of potassium loss through renal excretion and/or loss from the gastrointestinal tract exceeds the rate of potassium intake. Such depletion usually develops as a consequence of therapy with diuretics, primarily or secondary hyperaldosteronism, diabetic ketoacidosis, or inadequate replacement of potassium in patients on prolonged parenteral nutrition. Depletion can develop rapidly with severe diarrhea, especially if associated with vomiting. Potassium depletion due to these causes is usually accompanied by concomitant loss of chloride and is manifested by hypokalemia and metabolic alkalosis. Potassium depletion may produce weakness, fatigue, disturbances of cardiac rhythm (primarily ectopic beats), prominent U-waves in the electrocardiogram, and, in advanced cases, flaccid paralysis and/or impaired ability to concentrate urine. If potassium depletion associated with metabolic alkalosis cannot be managed by correcting the fundamental cause of the deficiency, e.g., where the patient requires long-term diuretic therapy, supplemental potassium in the form of high potassium food or potassium chloride may be able to restore normal potassium levels. In rare circumstances (e.g., patients with renal tubular acidosis) potassium depletion may be associated with metabolic acidosis and hyperchloremia. In such patients, potassium replacement should be accomplished with potassium salts other than the chloride, such as potassium bicarbonate, potassium citrate, potassium acetate, or potassium gluconate.
Trade Name | Cartizests |
Generic | Ascorbic Acid + Collagen Peptides + Glucosamine + Potassium Chloride |
Weight | vit c |
Type | Sachet |
Therapeutic Class | |
Manufacturer | Innovative Pharmaceuticals |
Available Country | India |
Last Updated: | January 7, 2025 at 1:49 am |
Uses
Vitamin C is used for prevention and treatment of scurvy. It may be used for pregnancy, lactation, infection, trauma, burns, cold exposure, following surgery, fever, stress, peptic ulcer, cancer, methaemoglobinaemia and in infants receiving unfortified formulas. It is also prescribed for haematuria, dental caries, pyorrhea, acne, infertility, atherosclerosis, fractures, leg ulcers, hay fever, vascular thrombosis prevention, levodopa toxicity, succinyl-choline toxicity, arsenic toxicity etc. To reduce the risk of stroke in the elderly, long-term supplementation with Vitamin C is essential.
Indicated for the treatment of osteoarthritis of knee, hip, spine, and other locations. Also used as dietary supplement
Potassium chloride is used for drug induced hypokalemia, liver cirrhosis, nausea, vomiting, cholera, diarrhoea, muscular weakness, paralysis, cardiac and congestive heart failure, diabetic ketoacidosis, ulcerative colitis, weakness, anorexia, drowsiness, Cushing's syndrome, pyloric stenosis, low blood pressure etc.
Cartizests is also used to associated treatment for these conditions: Common Cold, Deficiency, Vitamin A, Deficiency, Vitamin D, Fever, Flu caused by Influenza, Folate deficiency, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Oral bacterial infection, Scurvy, Vitamin C Deficiency, Vitamin Deficiency, Nutritional supplementation, Vitamin supplementationArthritis, Backache, Joint Pain, Osteoarthritis (OA), Osteoarthritis of the KneeDehydration, Dry Mouth, Hypokalemia, Hypotonic Dehydration, Hypovolaemia, Isotonic Dehydration, Markedly Reduced Food Intake, Metabolic Acidosis, Hypodermoclysis, Mild Metabolic acidosis, Mild, moderate Metabolic Acidosis, Ocular edema, Acid-Base Balance, Bowel preparation therapy, Electrolyte replacement, Fluid replacement therapy, Hemodialysis Treatment, Hemofiltration, Parenteral Nutrition, Parenteral rehydration therapy, Plasma Volume Replacement, Urine alkalinization therapy, Fluid and electrolyte maintenance therapy
How Cartizests works
In humans, an exogenous source of ascorbic acid is required for collagen formation and tissue repair by acting as a cofactor in the posttranslational formation of 4-hydroxyproline in -Xaa-Pro-Gly- sequences in collagens and other proteins. Ascorbic acid is reversibly oxidized to dehydroascorbic acid in the body. These two forms of the vitamin are believed to be important in oxidation-reduction reactions. The vitamin is involved in tyrosine metabolism, conversion of folic acid to folinic acid, carbohydrate metabolism, synthesis of lipids and proteins, iron metabolism, resistance to infections, and cellular respiration.
The mechanism of action of glucosamine in joint health is unclear, however there are several possible mechanisms that contribute to its therapeutic effects. Because glucosamine is a precursor for glycosaminoglycans, and glycosaminoglycans are a major component of joint cartilage, glucosamine supplements may help to rebuild cartilage and treat the symptoms of arthritis. Some in vitro studies show evidence that glucosamine reduces inflammation via inhibition of interferon gamma and Nuclear factor kappa B subunit 65 (NF-κB p65), improving the symptoms of arthritis and joint pain. Clinical relevance is unknown at this time.
Supplemental potassium in the form of high potassium food or potassium chloride may be able to restore normal potassium levels.
Dosage
Cartizests dosage
vitamin C is usually administered orally. When oral administration is not feasible or when malabsorption is suspected, the drug may be administered IM, IV, or subcutaneously. When given parenterally, utilization of the vitamin reportedly is best after IM administration and that is the preferred parenteral route.
For intravenous injection, dilution into a large volume parenteral such as Normal Saline, Water for Injection, or Glucose is recommended to minimize the adverse reactions associated with intravenous injection.
The average protective dose of vitamin C for adults is 70 to 150 mg daily. In the presence of scurvy, doses of 300 mg to 1 g daily are recommended. However, as much as 6 g has been administered parenterally to normal adults without evidence of toxicity.
To enhance wound healing, doses of 300 to 500 mg daily for a week or ten days both preoperatively and postoperatively are generally considered adequate, although considerably larger amounts have been recommended. In the treatment of burns, doses are governed by the extent of tissue injury. For severe burns, daily doses of 1 to 2 g are recommended. In other conditions in which the need for vitamin C is increased, three to five times the daily optimum allowances appear to be adequate.
Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever the solution and container permit.
500 mg tablet three times daily or as directed by the physician. A single dose of 1500 mg daily may also be effective. Obese individuals may need higher doses, based on body weight.
Oral:Dosage must be adjusted to the individual needs of each patient.
- Adults: In severe deficiencies 3-6 tablets or 4-8 teaspoonful or 25-50 mmol per day orally in divided doses for some days with fruit juice, sweet or plain water.
- Children: ½-1 teaspoonful twice daily or 1-3 mmol/kg body weight a day in several divided doses.
Patient should take Potassium chloride with meals.
Intravenous:
Severe acute hypokalaemia:
- Adult: If serum potassium level >2.5 mEq/L, give at a rate not exceeding 10 mEq/hr in a concentration of up to 40 mEq/L. Max dose: 200 mEq/24 hr. If serum potassium level <2 mEq/L, may infuse at a rate of up to 40 mEq/hr. Continuous cardiac monitoring is essential. Max dose: 400 mEq/24 hr.
75 mg KCl equivalent to 1 mmol K+
Side Effects
Ascorbic acid does not seem to have any important adverse effects at dosages less than 4 mg/day. Larger dose may cause diarrhoea or formation of renal calculi of calcium oxalate in patients with renal impairment. Ingestion of more than 600 mg daily have a diuretic action.
Safety studies with Glucosamine show no demonstrable toxicity. Rarely occurring side effects like mild & reversible intestinal flatulence are almost like placebo.
GI ulceration (sometimes with haemorrhage and perforation or with late formation of strictures) following the use of enteric-coated K chloride preparation; hyperkalaemia. Oral: Nausea, vomiting, diarrhoea and abdominal cramps. IV: Pain or phloebitis; cardiac toxicity.
Toxicity
The oral LD50 of glucosamine in rats is >5000 mg/kg. Symptoms of an overdose with glucosamine may include nausea, vomiting, abdominal pain, and diarrhea (common side effects of this drug). Severe and life-threatening hypersensitivity reactions to glucosamine may occur in patients with a shellfish allergy or asthma.
The administration of oral potassium salts to persons with normal excretory mechanisms for potassium rarely causes serious hyperkalemia. However, if excretory mechanisms are impaired, of if potassium is administered too rapidly intravenously, potentially fatal hyperkalemia can result. It is important to recognize that hyperkalemia is usually asymptomatic and may be manifested only by an increased serum potassium concentration (6.5-8.0 mEq/L) and characteristic electrocardiographic changes (peaking of T-waves, loss of P-wave, depression of S-T segment, and prolongation of the QT interval). Late manifestations include muscle paralysis and cardiovascular collapse from cardiac arrest (9-12 mEq/L).
Precaution
Ingestion of megadose (more than 1000 mg daily) of vitamin C during pregnancy has resulted in scurvy in neonates. Vitamin C in mega-doses has been contraindicated for patients with hyperoxaluria. Vitamin C itself is a reactive substance in the redox system and can give rise to false positive reactions in certain analytical tests for glucose, uric acid, creatine and occult blood.
Diabetics are advised to monitor blood glucose levels regularly while taking Glucosamine. No special studies were formed in patients with renal and/or hepatic insufficiency. The toxicological and pharmacokinetic profile of the product does not indicate limitations for these patients. However, administration to these patients with severe hepatic or renal insufficiency should be under appropriate medical supervision.
Renal or adrenocortical insufficiency; cardiac disease; acute dehydration; extensive tissue destruction. Pregnancy. Ensure adequate urine output; monitor plasma-potassium and other electrolyte concentrations. Discontinue treatment if severe nausea, vomiting or abdominal distress develops. Accumulation of potassium may occur in renal impairment.
Interaction
Potentially hazardous interactions: Ascorbic acid is incompatible in solution with aminophylline, bleomycin, erythromycin, lactobionate, nafcillin, nitrofurantoin sodium, conjugated oestrogen, sodium bicarbonate, sulphafurazole diethanolamine, chloramphenicol sodium succinate, chlorthiazide sodium and hydrocortisone sodium succinate.
Useful interactions: Ascorbic acid increases the apparent half-life of paracetamol and enhances iron absorption from the gastrointestinal tract.
There have been no reports of significant drug interactions ofGlucosamine with antibiotics, antidepressants, antihypertensives, nitrates, antiarrhythmics, anxiolytic, hypoglycaemic agents, anti-secretives.
Potassium-sparing diuretics, ACE inhibitors, ciclosporin and potassium-containing drugs. Antimuscarinics delay gastric emptying time consequently increasing risk of GI adverse effects esp of solid oral dosage forms.
Volume of Distribution
Results of a pharmacokinetic study of 12 healthy volunteers receiving three daily consecutive oral administrations of glucosamine sulfate soluble powder demonstrated glucosamine distribution to extravascular compartments. Human pharmacokinetic data for glucosamine is limited in the literature, however, a large animal model study of horses revealed a mean apparent volume of distribution of 15.4 L/kg. Concentrations of glucosamine ranged from 9-15 microM after an intravenous dose, and 0.3-0.7 microM after nasogastric dosing. These concentrations remained in the range of 0.1-0.7 microM in the majority of horses 12 hours after dosing, suggesting effectiveness of a once-daily dose. In rats and dogs, radioactivity from a C-14 labeled dose of glucosamine is detected in the liver, kidneys, articular cartilage, and other areas.
Elimination Route
70% to 90%
In a pharmacokinetic study, glucosamine was 88.7% absorption by the gastrointestinal tract. Absolute oral bioavailability was 44%, likely due to the hepatic first-pass effect. In a pharmacokinetic study of 12 healthy adults receiving oral crystalline glucosamine, plasma levels increased up to 30 times the baseline levels and Cmax was 10 microM with a 1,500 mg once-daily dose. Tmax was about 3 hours. AUC was 20,216 ± 5021 after a 15,000 mg dose.
Potassium is a normal dietary constituent and under steady-state conditions the amount of potassium absorbed from the gastrointestinal tract is equal to the amount excreted in the urine.
Half Life
16 days (3.4 hours in people who have excess levels of vitamin C)
The estimated half-life for glucosamine is 15 hours after an oral dose. After a bolus intravenous injection of 1005 mg crystalline glucosamine sulfate, the parent drug has an apparent half life of 1.11 hours.
Elimination Route
Fecal excretion of glucosamine in a pharmacokinetic study was 11.3% within 120 hours after administration. Urinary elimination was found to be 1.19% within the first 8 hours post-administration.
Potassium is a normal dietary constituent and, under steady-state conditions, the amount of potassium absorbed from the gastrointestinal tract is equal to the amount excreted in the urine. Potassium depletion will occur whenever the rate of potassium loss through renal excretion and/or loss from the gastrointestinal tract exceeds the rate of potassium intake.
Pregnancy & Breastfeeding use
The drug is safe in normal doses in pregnant women, but a daily intake of 5 gm or more is reported to have caused abortion. The drug may be taken safely during lactation.
Women who are pregnant or who could become pregnant should not supplement with glucosamine. Glucosamine has not been studied enough to determine their effects on a developing fetus. And no studies have evaluated the use of Glucosamine during pregnancy or lactation. It should be taken with caution and medical advice during pregnancy and lactation.
Category C: Either studies in animals have revealed adverse effects on the foetus (teratogenic or embryocidal or other) and there are no controlled studies in women or studies in women and animals are not available. Drugs should be given only if the potential benefit justifies the potential risk to the foetus.
Contraindication
There are no known contraindications for Glucosamine. But proven hypersensitivity to Glucosamine is a contraindication.
Hyperchloraemia, severe renal or adrenal insufficiency.
Storage Condition
Should be stored in a dry place below 30˚C.
Should be stored in cool and dry place.
Intravenous: Store at 15-30° C.
Oral: Store below 30° C.