Cecalcit

Cecalcit Uses, Dosage, Side Effects, Food Interaction and all others data.

Calcitriol is one of the most important active metabolites of vitamin D3. It is normally formed in the kidney from its precursor, 25-hydroxycolecalciferol (25-HCC). Physiological daily production is normally 0.5-1.0 mcg and is somewhat higher during periods of increased bone synthesis (e.g. growth or pregnancy). Calcitriol promotes intestinal absorption of Calcium and regulates bone mineralization.

Calcitriol is a biologically active calcitrophic hormone with anti-osteoporotic, immunomodulatory, anticarcinogenic, antipsoriatic, antioxidant, and mood-modulatory activities. Its main sites of action are the intestine, bone, kidney and parathyroid hormone . Calcitriol is a ligand for the vitamin D nuclear receptor, which is expressed in, but not limited to, gastrointestinal (GI) tissues, bones, and kidneys . As an active form of vitamin D3, calcitriol elevates the plasma levels of calcium by stimulating intestinal calcium uptake, increasing reabsorption of calcium by the kidneys, and possibly increasing the release of calcium from skeletal stores. The duration of pharmacologic activity of a single dose of exogenous calcitriol is expected to be about 3 to 5 days .

In addition to its important role in calcium metabolism, other pharmacological effects of calcitriol have been studied in various conditions including cancer models. Various studies demonstrated expression of vitamin D receptors in cancer cell lines, including mouse myeloid leukemia cells . Calcitriol has been found to induce differentiation and/or inhibit cell proliferation in vitro and in vivo in many cell types, such as malignant cell lines carcinomas of the breast, prostate, colon, skin, and brain, myeloid leukemia cells, and others . In early human prostate cancer trials, administration of 1.5 µg/d calcitriol in male participants resulted in a reduction in the rate of PSA rise in most participants, however it was coincided with dose-limiting hypercalcemia in most participants . Hypercalcemia and hypercalcuria were evident in numerous initial trials, and this may be due to these trials not testing the drug at concentrations that are active in preclinical systems . Findings from preclinical data show an additive or synergistic antineoplastic action of calcitriol when combined with agents including dexamethasone, retinoids, and radiation, as well as several cytotoxic chemotherapy drugs such as platinum compounds .

Vitamin D deficiency has long been suspected to increase the susceptibility to tuberculosis. The active form of calcitriol, 1,25-(OH)2-D3, has been found to enhance the ability of mononuclear phagocytes to suppress the intracellular growth of Mycobacterium tuberculosis. 1,25-(OH)2-D3 has demonstrated beneficial effects in animal models of such autoimmune diseases as rheumatoid arthritis. Vitamin D appears to demonstrate both immune-enhancing and immunosuppressive effects.

Calcium plays a vital role in the anatomy, physiology and biochemistry of organisms and of the cell, particularly in signal transduction pathways. The skeleton acts as a major mineral storage site for the element and releases Ca2+ ions into the bloodstream under controlled conditions. Circulating calcium is either in the free, ionized form or bound to blood proteins such as serum albumin. Although calcium flow to and from the bone is neutral, about 5 mmol is turned over a day. Bone serves as an important storage point for calcium, as it contains 99% of the total body calcium. Low calcium intake may also be a risk factor in the development of osteoporosis. The best-absorbed form of calcium from a pill is a calcium salt like carbonate or phosphate. Calcium gluconate and calcium lactate are absorbed well by pregnant women. Seniors absorb calcium lactate, gluconate and citrate better unless they take their calcium supplement with a full breakfast.

Calcium (Ca2+) plays a pivotal role in the physiology and biochemistry of organisms and the cell. It plays an important role in signal transduction pathways, where it acts as a second messenger, in neurotransmitter release from neurons, contraction of all muscle cell types, and fertilization. Many enzymes require calcium ions as a cofactor, those of the blood-clotting cascade being notable examples. Extracellular calcium is also important for maintaining the potential difference across excitable cell membranes, as well as proper bone formation.

Magnesium is classified as an alkaline earth metal and has 2 hydration shells. The element can be found in abundance in the hydrosphere and in mineral salts such as dolomite and magnesium carbonate.

Common dietary sources of magnesium include nuts (cashews, peanuts, almonds), beans, bananas, apples, carrots, broccoli, and leafy greens. Magnesium is an important enzyme cofactor and is essential to several metabolic processes. Further, the mineral helps regulate blood pressure and is necessary for RNA, DNA and protein synthesis among several other functions.

Despite the importance of magnesium and its availability via several food sources, an estimated 56 to 68% of adults who live in developed, western countries do not meet the recommended daily intake (RDI) of magnesium. Several factors and common behaviours reduce the availability of magnesium in the diet such as food processing and cooking vegetables (which are normally a rich source of magnesium).

A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with anemia, short stature, hypogonadism, impaired wound healing, and geophagia. It is identified by the symbol Zn .

A newer study suggests implies that an imbalance of zinc is associated with the neuronal damage associated with traumatic brain injury, stroke, and seizures .

Understanding the mechanisms that control brain zinc homeostasis is, therefore, imperative to the development of preventive and treatment regimens for these and other neurological disorders .

Trade Name Cecalcit
Generic Calcitriol + Calcium + Magnesium + Zinc
Type Capsule
Therapeutic Class
Manufacturer Ce Biotec Pvt Ltd
Available Country India
Last Updated: September 19, 2023 at 7:00 am
Cecalcit
Cecalcit

Uses

Calcitriol is used for the correction of the abnormalities of Calcium and Phosphate metabolism in patients with renal osteodystrophy.

Calcitriol is also used for the treatment of established post-menopausal osteoporosis, hypoparathyroidism, idiopathic hypoparathyroidism, pseudohypoparathyroidism, vitamin D dependent rickets.

Calcium is a mineral found in over-the-counter supplements or prescription formulations used for the treatment of specific medical conditions related to calcium deficiency.

Calcium plays a vital role in the anatomy, physiology and biochemistry of organisms and of the cell, particularly in signal transduction pathways. It is vital in cell signaling, muscular contractions, bone health, and signalling cascades.

Magnesium is a medication used for many purposes including constipation, indigestion, magnesium deficiency, and pre-eclampsia.

Healthy levels of magnesium can be achieved through a well balanced diet, but if food sources are insufficient, magnesium supplements can be used to prevent and treat magnesium deficiencies.

In medicine, various magnesium salts may be used in laxative and antacid products. For example, magnesium citrate is available over-the-counter and may be used to manage occasional constipation. Magnesium sulfate may be used on its own or with total parenteral nutrition to treat hypomagnesemia. Magnesium sulfate is also indicated to prevent seizures in pregnant women with pre-eclampsia, and to manage seizures associated with eclampsia.

Zinc is an essential element commonly used for the treatment of patients with documented zinc deficiency.

Zinc can be used for the treatment and prevention of zinc deficiency/its consequences, including stunted growth and acute diarrhea in children, and slowed wound healing. It is also utilized for boosting the immune system, treating the common cold and recurrent ear infections, as well as preventing lower respiratory tract infections .

Cecalcit is also used to associated treatment for these conditions: Hypocalcemia, Osteodystrophy, Psoriasis Vulgaris (Plaque Psoriasis), Secondary Hyperparathyroidism (SHPT), Vitamin D Resistant RicketsCalcium Deficiency, Deficiency, Vitamin D, Osteodystrophy, Osteomalacia, Osteoporosis, Chronic Hypocalcemia, Chronic Hypocalcemia caused by anticonvulsant medications, Care of the Joint, Mineral supplementation, Nutritional supplementationCalcium Deficiency, Magnesium Deficiency, Zinc DeficiencyCandidiasis, Common Cold, Diaper Dermatitis, Diaper Rash, Eye redness, Iron Deficiency (ID), Ocular Irritation, Skin Irritation, Sunburn, Wilson's Disease, Zinc Deficiency, Dietary and Nutritional Therapies, Dietary supplementation

How Cecalcit works

The mechanism of action of calcitriol in the treatment of psoriasis is accounted for by their antiproliferative activity for keratinocytes and their stimulation of epidermal cell differentiation. The anticarcinogenic activity of the active form of Calcitriol appears to be correlated with cellular vitamin D receptor (VDR) levels. Vitamin D receptors belong to the superfamily of steroid-hormone zinc-finger receptors. VDRs selectively bind 1,25-(OH)2-D3 and retinoic acid X receptor (RXR) to form a heterodimeric complex that interacts with specific DNA sequences known as vitamin D-responsive elements. VDRs are ligand-activated transcription factors. The receptors activate or repress the transcription of target genes upon binding their respective ligands. It is thought that the anticarcinogenic effect of Calcitriol is mediated via VDRs in cancer cells. The immunomodulatory activity of calcitriol is thought to be mediated by vitamin D receptors (VDRs) which are expressed constitutively in monocytes but induced upon activation of T and B lymphocytes. 1,25-(OH)2-D3 has also been found to enhance the activity of some vitamin D-receptor positive immune cells and to enhance the sensitivity of certain target cells to various cytokines secreted by immune cells.

A study suggests that calcitriol plays an immunoregulatry role by suppressing the aryl hydrocarbon receptor (AhR) expression in human Th9, a pro-inflammatory CD4 T cell subset . This suppression subsequently leads to repressed expression of BATF, a transcription factor essential for Th9 . Calcitriol has also been found to induce monocyte differentiation and to inhibit lymphocyte proliferation and production of cytokines, including interleukin IL-1 and IL-2, as well as to suppress immunoglobulin secretion by B lymphocytes.

Calcium plays a vital role in the anatomy, physiology and biochemistry of organisms and of the cell, particularly in signal transduction pathways. More than 500 human proteins are known to bind or transport calcium. The skeleton acts as a major mineral storage site for the element and releases Ca2+ ions into the bloodstream under controlled conditions. Circulating calcium is either in the free, ionized form or bound to blood proteins such as serum albumin. Parathyroid hormone (secreted from the parathyroid gland) regulates the resorption of Ca2+ from bone. Calcitonin stimulates incorporation of calcium in bone, although this process is largely independent of calcitonin. Although calcium flow to and from the bone is neutral, about 5 mmol is turned over a day. Bone serves as an important storage point for calcium, as it contains 99% of the total body calcium. Low calcium intake may also be a risk factor in the development of osteoporosis. The best-absorbed form of calcium from a pill is a calcium salt like carbonate or phosphate. Calcium gluconate and calcium lactate are absorbed well by pregnant women. Seniors absorb calcium lactate, gluconate and citrate better unless they take their calcium supplement with a full breakfast. The currently recommended calcium intake is 1,500 milligrams per day for women not taking estrogen and 800 milligrams per day for women on estrogen. There is close to 300 milligrams of calcium in one cup of fluid milk. Calcium carbonate is currently the best and least expensive form of calcium supplement available.

Magnesium is a cofactor for at least 300 enzymes and is important for several functions in the body with some key processes identified below. Enzymes that rely on magnesium to operate help produce energy through oxidative phosphorylation, glycolysis and ATP metabolism. They are also involved in nerve function, muscle contraction, blood glucose control, hormone receptor binding, protein synthesis, cardiac excitability, blood pressure control, gating of calcium channels and transmembrane ion flux.

The mitochondrial intracellular space is rich in magnesium, since it is required to produce the active form of ATP (adenosine triphosphate) from ADP (adenosine diphosphate) and inorganic phosphate, and behaves as a counter ion for the energy rich molecule. Additionally, magnesium is essential for ATP metabolism.

Zinc has three primary biological roles: catalytic, structural, and regulatory. The catalytic and structural role of zinc is well established, and there are various noteworthy reviews on these functions. For example, zinc is a structural constituent in numerous proteins, inclusive of growth factors, cytokines, receptors, enzymes, and transcription factors for different cellular signaling pathways. It is implicated in numerous cellular processes as a cofactor for approximately 3000 human proteins including enzymes, nuclear factors, and hormones .

Zinc promotes resistance to epithelial apoptosis through cell protection (cytoprotection) against reactive oxygen species and bacterial toxins, likely through the antioxidant activity of the cysteine-rich metallothioneins .

In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF pathway, decreases NF-kappaB activation, leading to decreased gene expression and generation of tumor necrosis factor-alpha (TNF-alpha), IL-1beta, and IL-8 .

There are several mechanisms of action of zinc on acute diarrhea. Various mechanisms are specific to the gastrointestinal system: zinc restores mucosal barrier integrity and enterocyte brush-border enzyme activity, it promotes the production of antibodies and circulating lymphocytes against intestinal pathogens, and has a direct effect on ion channels, acting as a potassium channel blocker of adenosine 3-5-cyclic monophosphate-mediated chlorine secretion. Cochrane researchers examined the evidence available up to 30 September 2016 .

Zinc deficiency in humans decreases the activity of serum thymulin (a hormone of the thymus), which is necessary for the maturation of T-helper cells. T-helper 1 (Th(1)) cytokines are decreased but T-helper 2 (Th(2)) cytokines are not affected by zinc deficiency in humans [A342417].

The change of Th(1) to Th(2) function leads to cell-mediated immune dysfunction. Because IL-2 production (Th(1) cytokine) is decreased, this causes decreased activity of natural-killer-cell (NK cell) and T cytolytic cells, normally involved in killing viruses, bacteria, and malignant cells [A3424].

In humans, zinc deficiency may lead to the generation of new CD4+ T cells, produced in the thymus. In cell culture studies (HUT-78, a Th(0) human malignant lymphoblastoid cell line), as a result of zinc deficiency, nuclear factor-kappaB (NF-kappaB) activation, phosphorylation of IkappaB, and binding of NF-kappaB to DNA are decreased and this results in decreased Th(1) cytokine production .

In another study, zinc supplementation in human subjects suppressed the gene expression and production of pro-inflammatory cytokines and decreased oxidative stress markers [A3424]. In HL-60 cells (a human pro-myelocytic leukemia cell line), zinc deficiency increased the levels of TNF-alpha, IL-1beta, and IL-8 cytokines and mRNA. In such cells, zinc was found to induce A20, a zinc finger protein that inhibited NF-kappaB activation by the tumor necrosis factor receptor-associated factor pathway. This process decreased gene expression of pro-inflammatory cytokines and oxidative stress markers .

The exact mechanism of zinc in acne treatment is poorly understood. However, zinc is considered to act directly on microbial inflammatory equilibrium and facilitate antibiotic absorption when used in combination with other agents. Topical zinc alone as well as in combination with other agents may be efficacious because of its anti-inflammatory activity and ability to reduce P. acnes bacteria by the inhibition of P. acnes lipases and free fatty acid levels .

Dosage

Cecalcit dosage

Injection

The recommended intravenous initial dose of Calcitriol injection, depending on the severity of the hypocalcemia and/or secondary hyperparathyroidism, is 1 mcg (0.02 mcg/kg) to 2 mcg administered three times weekly, approximately every other day. Doses as small as 0.5 mcg and as large as 4 mcg three times weekly have been used as an initial dose. If a satisfactory response is not observed, the dose may be increased by 0.5 to 1 mcg at two to four week intervals.

Capsule

Adult

Renal osteodystrophy: The initial daily dose is 0.25 mcg of Calcitriol. In patients with normal or only slighty reduced Calcium level, doses of 0.25 mcg every other day are sufficient. If no satisfactory response in the biochemical parameters and clinical manifestations of the disease is observed within 2-4 weeks, the daily dosage may be increased by 0.25 mcg at 2-4 week intervals.

Post-menopausal osteoporosis: The recommended dose of Calcitriol is 0.25 mcg twice daily.

Serum calcium and creatinin levels should be determined at 1-3 and 6 months and at 6 monthly intervals thereafter.

Hypoparathyroidism & Rickets: The recommended initial dose of Calcitriol is 0.25 mcg per day in the morning. In patients with renal osteodystrophy or hypoparathyroidism and rickets if within 2-4 weeks no satisfactory response is observed by usual dose then dose may be increased at two to four week intervals.

Elderly patients

No specific dosage modifications are required in elderly patents.

Children

Dosage in children has not been established.

Side Effects

Since Calcitriol exerts vitamin D activity, adverse effects may occur which are similar to those found when an excessive dose of vitamin D is taken, i.e. hypercalcaemia syndrome or calcium intoxication (depending on the severity and duration of hypercalcaemia). Occasional acute symptoms include anorexia, headache, nausea, vomiting, abdominal pain or stomach ache and constipation.

Toxicity

LD50 (oral, rat) = 620 μg/kg; LD50 (intraperitoneal, rat) > 5 mg/kg .

Symptoms of calcitriol toxicity mirrors the early and late signs and symptoms of vitamin D intoxication associated with hypercalcemia . Early signs include weakness, headache, somnolence, nausea, vomiting, dry mouth, constipation, muscle pain, bone pain and metallic taste. Late signs are characterized by polyuria, polydipsia, anorexia, weight loss, nocturia, conjunctivitis (calcific), pancreatitis, photophobia, rhinorrhea, pruritus, hyperthermia, decreased libido, elevated BUN, albuminuria, hypercholesterolemia, elevated SGOT and SGPT, ectopic calcification, hypertension, cardiac arrhythmias and, rarely, overt psychosis .

The recommended dietary allowance of magnesium ranges from 30 mg for infants to 420 mg for males between the age of 31 and 50. According to the institute of Medicine (IOM), the majority of adults can tolerate 350 mg of magnesium per day without experiencing adverse effects. Symptoms of magnesium toxicity include diarrhea and other gastrointestinal effects, thirst, muscle weakness, drowsiness, severe back and pelvic pain, hypotension, dizziness, confusion, difficulty breathing, lethargy, and deterioration of kidney function. Other more severe symptoms associated with magnesium overdose include loss of consciousness, respiratory arrest, cardiac arrhythmias and cardiac arrest.

Regular use of laxatives containing magnesium may lead to severe and even fatal hypermagnesemia.

Discontinuation of magnesium products including supplements, laxatives, and antacids is usually sufficient to manage mild cases of magnesium overdose; however, patients should also be screened for renal impairment.

In severe cases of magnesium overdose, patients may require supportive care and interventions including intravenous fluids and furosemide, IV calcium chloride or calcium gluconate, renal dialysis and artificial respiratory support.

According to the Toxnet database of the U.S. National Library of Medicine, the oral LD50 for zinc is close to 3 g/kg body weight, more than 10-fold higher than cadmium and 50-fold higher than mercury .

The LD50 values of several zinc compounds (ranging from 186 to 623 mg zinc/kg/day) have been measured in rats and mice .

Precaution

Immobilised patients, e.g. those who have undergone surgery, are particularly exposed to the risk of hypercalcaemia. Patients with normal renal function who are taking Calcitriol should avoid dehydration. Adequate fluid intake should be maintained.

Interaction

Concomitant treatment with a thiazide diuretic increases the risk of hypercalcaemia. Calcitriol dosage must be determined with care in patients undergoing treatment with digitalis, as hypercalcaemia in such patients may precipitate cardiac arrhythmias. Administration of enzyme inducers such as phenytoin or phenobarbital may lead to increased metabolism and hence reduced serum concentrations of Calcitriol. Therefore higher doses of Calcitriol may be necessary if these drugs are administered simultaneously. Colestyramine can reduce intestinal absorption of fat-soluble vitamins and therefore may impair intestinal absorption of Calcitriol.

Volume of Distribution

Upon intravenous administration, the volume of distribution of calcitriol was 0.49±0.14 L/kg in healthy male volunteers and 0.27±0.06 l/kg in uraemic male patients participating in a pharmacokinetic study . There is some evidence that calcitriol is transferred into human milk at low levels (ie, 2.2±0.1 pg/mL) in mothers . Calcitriol from maternal circulation may also enter the fetal circulation .

According to a pharmacokinetic review, the volume of distribution of magnesium sulphate when used to manage patients with pre-eclampsia and eclampsia ranged from 13.65 to 49.00 L.

A pharmacokinetic study was done in rats to determine the distribution and other metabolic indexes of zinc in two particle sizes. It was found that zinc particles were mainly distributed to organs including the liver, lung, and kidney within 72 hours without any significant difference being found according to particle size or rat gender .

Elimination Route

Upon administration, calcitriol is rapidly absorbed from the intestines. When a single oral dose of 0.5 mcg of calcitriol was administered, the mean serum concentrations of calcitriol rose from a baseline value of 40.0±4.4 (SD) pg/mL to 60.0±4.4 pg/mL at 2 hours, and declined to 53.0±6.9 at 4 hours, 50±7.0 at 8 hours, 44±4.6 at 12 hours and 41.5±5.1 at 24 hours . Following administration of single doses of 0.25 to 1.0 mcg of calcitriol, the peak plasma concentrations were reached within 3 to 6 hours . In a pharmacokinetic study, the oral bioavailability was 70.6±5.8% in healthy male volunteers and 72.2±4.8% in male patients with uraemia .

Approximately 24-76% of ingested magnesium is absorbed in the gastrointestinal tract, primarily via passive paracellular absorption in the small intestine.

Zinc is absorbed in the small intestine by a carrier-mediated mechanism . Under regular physiologic conditions, transport processes of uptake do not saturate. The exact amount of zinc absorbed is difficult to determine because zinc is secreted into the gut. Zinc administered in aqueous solutions to fasting subjects is absorbed quite efficiently (at a rate of 60-70%), however, absorption from solid diets is less efficient and varies greatly, dependent on zinc content and diet composition .

Generally, 33% is considered to be the average zinc absorption in humans . More recent studies have determined different absorption rates for various populations based on their type of diet and phytate to zinc molar ratio. Zinc absorption is concentration dependent and increases linearly with dietary zinc up to a maximum rate [L20902].

Additionally zinc status may influence zinc absorption. Zinc-deprived humans absorb this element with increased efficiency, whereas humans on a high-zinc diet show a reduced efficiency of absorption .

Half Life

After administration of single oral doses, the elimination half life was 5-8 hours .

Magnesiums biologic half-life is reported to be approximately 1000 hours or 42 days.

The half-life of zinc in humans is approximately 280 days .

Clearance

The metabolic clearance rate was 23.5±4.34 ml/min in healthy male volunteers and 10.1±1.35 ml/min in male patients with uraemia . In the pediatric patients undergoing peritoneal dialysis receiving dose of 10.2 ng/kg (SD 5.5 ng/kg) for 2 months, the clearance rate was 15.3 mL/hr/kg .

In one study of healthy patients, the clearance of zinc was found to be 0.63 ± 0.39 μg/min .

Elimination Route

In normal subjects, approximately 27% and 7% of the radioactivity appeared in the feces and urine, respectively, within 24 hours . Calcitriol undergoes enterohepatic recycling and biliary excretion. The metabolites of calcitriol are excreted primarily in feces. Cumulative excretion of radioactivity on the sixth day following intravenous administration of radiolabeled calcitriol averaged 16% in urine and 49% in feces .

The kidney excretes 250 mmol a day in urine, and resorbs 245 mmol, leading to a net loss in the urine of 5 mmol/d.

The majority of magnesium is excreted renally.

The excretion of zinc through gastrointestinal tract accounts for approximately one-half of all zinc eliminated from the body .

Considerable amounts of zinc are secreted through both biliary and intestinal secretions, however most is reabsorbed. This is an important process in the regulation of zinc balance. Other routes of zinc excretion include both urine and surface losses (sloughed skin, hair, sweat) .

Zinc has been shown to induce intestinal metallothionein, which combines zinc and copper in the intestine and prevents their serosal surface transfer. Intestinal cells are sloughed with approximately a 6-day turnover, and the metallothionein-bound copper and zinc are lost in the stool and are thus not absorbed .

Measurements in humans of endogenous intestinal zinc have primarily been made as fecal excretion; this suggests that the amounts excreted are responsive to zinc intake, absorbed zinc and physiologic need .

In one study, elimination kinetics in rats showed that a small amount of ZnO nanoparticles was excreted via the urine, however, most of the nanoparticles were excreted via the feces .

Pregnancy & Breastfeeding use

Pregnancy category C. Calcitriol has been found to be teratogenic in rabbits. There are no adequate and well-controlled studies in pregnant women. Calcitriol should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Contraindication

Calcitriol is contraindicated in patients with known hypersensitivity to any of its ingredients. Calcitriol is also contraindicated in all diseases associated with hypercalcemia.

Special Warning

Elderly patients: No specific dosage modifications are required in elderly patients.

Acute Overdose

Administration of Calcitriol to patients in excess of their daily requirements can cause hypercalcaemia, hypercalciuria and hyperphospatemia. Since Calcitriol is a derivative of vitamin D, the signs and symptoms of overdose are the same as for an overdose of vitamin D.

Storage Condition

Store between 15-30° C. Protect from moisture, heat and light. Do not freeze.

Innovators Monograph

You find simplified version here Cecalcit


*** Taking medicines without doctor's advice can cause long-term problems.
Share