Confi Charge
Confi Charge Uses, Dosage, Side Effects, Food Interaction and all others data.
Folic acid is essential for the production of certain coenzymes in many metabolic systems such as purine and pyrimidine synthesis. It is also essential in the synthesis and maintenance of nucleoprotein in erythropoesis. It also promotes WBC and platelet production in folate-deficiency anaemia.
Folic acid is a water-soluble B-complex vitamin found in foods such as liver, kidney, yeast, and leafy, green vegetables. Also known as folate or Vitamin B9, folic acid is an essential cofactor for enzymes involved in DNA and RNA synthesis. More specifically, folic acid is required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. Folic acid is the precursor of tetrahydrofolic acid, which is involved as a cofactor for transformylation reactions in the biosynthesis of purines and thymidylates of nucleic acids. Impairment of thymidylate synthesis in patients with folic acid deficiency is thought to account for the defective deoxyribonucleic acid (DNA) synthesis that leads to megaloblast formation and megaloblastic and macrocytic anemias. Folic acid is particularly important during phases of rapid cell division, such as infancy, pregnancy, and erythropoiesis, and plays a protective factor in the development of cancer. As humans are unable to synthesize folic acid endogenously, diet and supplementation is necessary to prevent deficiencies. In order to function properly within the body, folic acid must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted by anti-metabolite therapies such as Methotrexate as they function as DHFR inhibitors to prevent DNA synthesis in rapidly dividing cells, and therefore prevent the formation of DHF and THF.
In general, folate serum levels below 5 ng/mL indicate folate deficiency, and levels below 2 ng/mL usually result in megaloblastic anemia.
Levocarnitine is a naturally occurring substance required in mammalian energy metabolism. It has been shown to facilitate long-chain fatty acid entry into cellular mitochondria, thereby delivering substrate for oxidation and subsequent energy production in the form of Adenosine Tri phosphate or ATP. Fatty acids are utilized as an energy substrate in all tissues except the brain. In skeletal and cardiac muscle, fatty acids are the main substrate for energy production.
Levocarnitine is a carrier molecule in the transport of long chain fatty acids across the inner mitochondrial membrane. It also exports acyl groups from subcellular organelles and from cells to urine before they accumulate to toxic concentrations. Lack of carnitine can lead to liver, heart, and muscle problems. Carnitine deficiency is defined biochemically as abnormally low plasma concentrations of free carnitine, less than 20 µmol/L at one week post term and may be associated with low tissue and/or urine concentrations. Further, this condition may be associated with a plasma concentration ratio of acylcarnitine/levocarnitine greater than 0.4 or abnormally elevated concentrations of acylcarnitine in the urine. Only the L isomer of carnitine (sometimes called vitamin BT) affects lipid metabolism. The "vitamin BT" form actually contains D,L-carnitine, which competitively inhibits levocarnitine and can cause deficiency. Levocarnitine can be used therapeutically to stimulate gastric and pancreatic secretions and in the treatment of hyperlipoproteinemias.
Trade Name | Confi Charge |
Generic | Folic Acid + Green Tea Extract + Levocarnitine + Panax Ginseng Extract + Vit C + Vit B12 |
Type | Tablet |
Therapeutic Class | |
Manufacturer | Sarthak Pharma |
Available Country | India |
Last Updated: | September 19, 2023 at 7:00 am |
Uses
Prophylaxis of megaloblastic anaemia in pregnancy, Supplement for women of child-bearing potential, Folate-deficient megaloblastic anaemia, Prophylaxis of neural tube defect in pregnancy
The supplemental Levocarnitine use is widely established in the management of cardiac ischemia and peripheral arterial disease. It is generally used for cardio protection. It lowers triglyceride levels and increases levels of HDL cholesterol. It is used with benefits in those with primary and secondary carnitine deficiency syndromes. There is also evidence of its use in liver, kidney and immune disorders or in diabetes and Alzheimer's disease. There is little evidence that supplemental Levocarnitine boosts energy, increases athletic performance or inhibits obesity. The indications of Levocarnitine may be summarized as follows:
- Heart Diseases
- Congestive Heart Failure
- Kidney Disease
- Chronic Fatigue Syndrome
- High Cholesterol
- Intermittent Claudication
- Dementia and memory impairment
- Down Syndrome
- Male infertility
- Hyperthyroidism
Confi Charge is also used to associated treatment for these conditions: Anaemia folate deficiency, Folate deficiency, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Latent Iron Deficiency, Neural Tube Defects (NTDs), Vitamin Deficiency, Methotrexate toxicity, Nutritional supplementationCarnitine Deficiency, Congenital carnitine deficiency, Secondary Carnitine deficiency
How Confi Charge works
Folic acid, as it is biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by dihydrofolate reductase (DHFR). These folic acid congeners are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids, methylate tRNA, and generate and use formate. Using vitamin B12 as a cofactor, folic acid can normalize high homocysteine levels by remethylation of homocysteine to methionine via methionine synthetase.
Levocarnitine can be synthesised within the body from the amino acids lysine or methionine. Vitamin C (ascorbic acid) is essential to the synthesis of carnitine. Levocarnitine is a carrier molecule in the transport of long chain fatty acids across the inner mitochondrial membrane. It also exports acyl groups from subcellular organelles and from cells to urine before they accumulate to toxic concentrations. Only the L isomer of carnitine (sometimes called vitamin BT) affects lipid metabolism. Levocarnitine is handled by several proteins in different pathways including carnitine transporters, carnitine translocases, carnitine acetyltransferases and carnitine palmitoyltransferases.
Dosage
Confi Charge dosage
Supplement for women of child-bearing potential: 0.4 mg daily.
Folate-deficient megaloblastic anaemia: 5 mg daily for 4 mth, up to 15 mg daily in malabsorption states. Continued dosing at 5 mg every 1-7 days may be needed in chronic haemolytic states, depending on the diet and rate of haemolysis.
Prophylaxis of neural tube defect in pregnancy: 4 or 5 mg daily starting before pregnancy and continued through the 1st trimester.
Prophylaxis of megaloblastic anaemia in pregnancy: 0.2-0.5 mg daily.
Tablet-
- Adults: The recommended oral dosage for adults is 990 mg, two or three times a day using the 330 mg tablets, depending on clinical response.
- Infants and children: The recommended oral dosage for infants and children is between 50 and 100 mg/kg/day in divided doses, with a maximum of 3 g/day. Dosage should begin at 50 mg/kg/day. The exact dosage will depend on clinical response.
Monitoring should include periodic blood chemistries, vital signs, plasma carnitine concentrations and overall clinical condition.Syrup-
- Adults: 10 to 30 ml/day. Dosage should start at 10 ml/day in divided doses, and be increased slowly while assessing tolerance and therapeutic response.
- Infants and children: 50 to 100 mg/kg/day which is equivalent to 0.5 ml/kg/day. Dosage should start at 50 mg/kg/day, and be increased slowly to a maximum of 3 g/day (30 ml/day) while assessing tolerance and therapeutic response. Solution may be consumed alone or dissolved in drink or other liquid food. Doses should be spaced evenly throughout the day (every three or four hours) preferably during or following meals and should be consumed slowly in order to maximize tolerance.
May be taken with or without food.
Side Effects
GI disturbances, hypersensitivity reactions; bronchospasm.
Generally Levocarnitine is well tolerated. However, few side effects including transient nausea and vomiting, abdominal cramps, and diarrhoea may occur
Toxicity
IPR-MUS LD50 85 mg/kg,IVN-GPG LD50 120 mg/kg, IVN-MUS LD50 239 mg/kg, IVN-RAT LD50 500 mg/kg, IVN-RBT LD50 410 mg/kg
LD50 > 8g/kg (mouse, oral). Adverse effects include hypertension, fever, tachycardia and seizures.
Precaution
Treatment resistance may occur in patients with depressed haematopoiesis, alcoholism, deficiencies of other vitamins. Neonates.
The safety and efficacy of oral Levocarnitine has not been evaluated in patients with renal insufficiency. Chronic administration of high doses of oral Levocarnitine in patients with severely compromised renal function or in ESRD patients on dialysis may result in accumulation of the potentially toxic metabolites, trimethylamine (TMA) and trimethylamine-N-oxide (TMAO), since these metabolites are normally excreted in the urine
Interaction
Antiepileptics, oral contraceptives, anti-TB drugs, alcohol, aminopterin, methotrexate, pyrimethamine, trimethoprim and sulphonamides may result to decrease in serum folate contrations. Decreases serum phenytoin concentrations.
Reports of INR increase with the use of warfarin have been observed. It is recommended that INR levels be monitored in patients on warfarin therapy after the initiation of treatment with levocarnitine or after dose adjustments.
Volume of Distribution
Tetrahydrofolic acid derivatives are distributed to all body tissues but are stored primarily in the liver.
The steady state volume of distribution (Vss) of an intravenously administered dose, above endogenous baseline levels, was calculated to be 29.0 +/- 7.1L. However this value is predicted to be an underestimate of the true Vss.
Elimination Route
Folic acid is absorbed rapidly from the small intestine, primarily from the proximal portion. Naturally occurring conjugated folates are reduced enzymatically to folic acid in the gastrointestinal tract prior to absorption. Folic acid appears in the plasma approximately 15 to 30 minutes after an oral dose; peak levels are generally reached within 1 hour.
Absolute bioavailability is 15% (tablets or solution). Time to maximum plasma concentration was found to be 3.3 hours.
Half Life
17.4 hours (elimination) following a single intravenous dose.
Clearance
Total body clearance was found to be a mean of 4L/h.
Elimination Route
After a single oral dose of 100 mcg of folic acid in a limited number of normal adults, only a trace amount of the drug appeared in the urine. An oral dose of 5 mg in 1 study and a dose of 40 mcg/kg of body weight in another study resulted in approximately 50% of the dose appearing in the urine. After a single oral dose of 15 mg, up to 90% of the dose was recovered in the urine. A majority of the metabolic products appeared in the urine after 6 hours; excretion was generally complete within 24 hours. Small amounts of orally administered folic acid have also been recovered in the feces. Folic acid is also excreted in the milk of lactating mothers.
Following a single intravenous dose, 73.1 +/- 16% of the dose was excreted in the urine during the 0-24 hour interval. Post administration of oral carnitine supplements, in addition to a high carnitine diet, 58-65% of the administered radioactive dose was recovered from urine and feces in 5-11 days.
Pregnancy & Breastfeeding use
Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).
Levocarnitine is categorized by the USFDA as Pregnancy Category B. There are no adequate and well-controlled studies in pregnant women. Supplemental Levocarnitine should be used by pregnant women only if clearly indicated and only under medical supervision. It is not known whether Levocarnitine is excreted in human milk. Supplemental Levocarnitine is not advised for nursing mothers. Those with seizure disorders should only use Levocarnitine under medical advisement and supervision.
Contraindication
Undiagnosed megaloblastic anaemia; pernicious, aplastic or normocytic anaemias.
There is no known disease or syndrome in which Levocarnitine administration is contraindicated. It is contraindicated in patients with hypersensitivity to any of its components.
Acute Overdose
There have been no reports of toxicity from levocarnitine overdosage. Levocarnitine is easily removed from plasma by dialysis. The intravenous LD50 of levocarnitine in rats is 5.4 g/kg and the oral LD50 of levocarnitine in mice is 19.2 g/kg. Large doses of levocarnitine may cause diarrhea.
Storage Condition
Store at 15-30° C.
Tablet: Store in a cool & dry place, protected from light & moisture.
Solution: Store in a cool & dry place, protected from light.
Innovators Monograph
You find simplified version here Confi Charge