Consivas Ez Uses, Dosage, Side Effects and more

Consivas Ez Uses, Dosage, Side Effects, Food Interaction and all others data.

Ezetimibe localises at the brush border of the small intestine and inhibits absorption of cholesterol via the sterol transporter, Niemann-Pick C1-Like1 (NPC1L1). This results in decreased delivery of cholesterol to the liver, reduction of hepatic cholesterol stores and increased clearance of cholesterol from the blood.

Ezetimibe was shown to reduce the levels of total cholesterol (total-C), low-density lipoprotein cholesterol (LDL-C), apoprotein B (Apo B), non-high-density lipoprotein cholesterol (non-HDL-C), and triglycerides (TG), and increase high-density lipoprotein cholesterol (HDL-C) in patients with hyperlipidemia. This therapeutic effect was more profound when ezetimibe was co-administered with a statin or fenofibrate compared to either treatment alone. In clinical trials involving patients with homozygous and heterozygous familial hypercholesterolemia and in those with sitosterolemia, a recommended therapeutic dose of ezetimibe was effective in reducing the LDL levels by 15-20% while increasing HDL-C by 2.5-5%.

The effects of increased exposure to ezetimibe secondary to moderate-severe hepatic impairment have not been assessed - patients meeting these criteria should avoid the use of ezetimibe. Post-marketing reports indicate the potential for myopathy and rhabdomyolysis in patients taking ezetimibe, and this risk appears to be exacerbated in patients concurrently receiving, or having recently received, statin therapy.

Rosuvastatin is a selective and competitive inhibitor of HMG-CoA reductase, the rate-limiting enzyme that converts 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate, a precursor of sterols, including cholesterol.The primary site of action of rosuvastatin is the liver, the target organ for lowering cholesterol. Rosuvastatin increases the number of hepatic LDL receptors on the cell surface, enhancing uptake and catabolism of LDL and it inhibits the hepatic synthesis of VLDL, thereby reducing the total number of VLDL and LDL particles.

Rosuvastatin is a synthetic, enantiomerically pure antilipemic agent. It is used to lower total cholesterol, low density lipoprotein-cholesterol (LDL-C), apolipoprotein B (apoB), non-high density lipoprotein-cholesterol (non-HDL-C), and trigleride (TG) plasma concentrations while increasing HDL-C concentrations. High LDL-C, low HDL-C and high TG concentrations in the plasma are associated with increased risk of atherosclerosis and cardiovascular disease. The total cholesterol to HDL-C ratio is a strong predictor of coronary artery disease and high ratios are associated with higher risk of disease. Increased levels of HDL-C are associated with lower cardiovascular risk. By decreasing LDL-C and TG and increasing HDL-C, rosuvastatin reduces the risk of cardiovascular morbidity and mortality.

Elevated cholesterol levels, and in particular, elevated low-density lipoprotein (LDL) levels, are an important risk factor for the development of CVD. Use of statins to target and reduce LDL levels has been shown in a number of landmark studies to significantly reduce the risk of development of CVD and all-cause mortality. Statins are considered a cost-effective treatment option for CVD due to their evidence of reducing all-cause mortality including fatal and non-fatal CVD as well as the need for surgical revascularization or angioplasty following a heart attack. Evidence has shown that even for low-risk individuals (with 19,20

Skeletal Muscle Effects

Trade Name Consivas Ez
Generic Rosuvastatin + Ezetimibe
Weight 20mg
Type Tablet
Therapeutic Class
Manufacturer Emcure Pharmaceuticals Ltd
Available Country India
Last Updated: January 7, 2025 at 1:49 am
Consivas Ez
Consivas Ez

Uses

Primary Hypercholesterolemia: Ezetimibe co-administered with statin is used for adjunctive therapy to diet for use in patients with primary (heterozygous familial and non-familial) hypercholesterolemia who are not appropriately controlled with a statin alone.Ezetimibe monotherapy is used for adjunctive therapy to diet for use in patients with primary (heterozygous familial and non-familial) hypercholesterolemia in whom a statin is considered inappropriate or is not tolerated.

Prevention of Cardiovascular Events: Ezetimibe is used to reduce the risk of cardiovascular events in patients with coronary heart disease (CHD) and a history of acute coronary syndrome (ACS) when added to ongoing statin therapy or initiated concomitantly with a statin.

Homozygous Familial Hypercholesterolaemia (HoFH): Ezetimibe co-administered with a statin, is used for adjunctive therapy to diet for use in patients with HoFH. Patients may also receive adjunctive treatments (e.g., LDL apheresis).

Homozygous Sitosterolemia (Phytosterolemia): Ezetimibe is used for adjunctive therapy to diet for use in patients with homozygous familial sitosterolemia

Primary hypercholesterolemia (type IIa including heterozygous familial hypercholesterolemia), mixed dyslipidemia (type IIb), or homozygous familial hypercholesterolemia in patients who have not responded adequately to diet and other appropriate measures; prevention of cardiovascular events in patients at high risk of a first cardiovascular event.

Consivas Ez is also used to associated treatment for these conditions: Elevated Blood Lipids, Elevated sitosterol and campesterolAtherosclerosis, Atherosclerotic Cardiovascular Diseases, Cardiovascular Disease (CVD), Cardiovascular Events, Dysbetalipoproteinemia, Heterozygous Familial Hypercholesterolemia, High Blood Pressure (Hypertension), High Cholesterol, Homozygous Familial Hypercholesterolemia, Hypertension,Essential, Hypertriglyceridemias, Major Adverse Cardiovascular Events, Mixed Dyslipidemias, Postoperative Thromboembolism, Primary Hypercholesterolemia, Primary Hyperlipidemia, Cardiovascular Primary Prevention, Lipid-Lowering Therapy

How Consivas Ez works

Ezetimibe mediates its blood cholesterol-lowering effect via selectively inhibiting the absorption of cholesterol and phytosterol by the small intestine without altering the absorption of fat-soluble vitamins and nutrients. The primary target of ezetimibe is the cholesterol transport protein Niemann-Pick C1-Like 1 (NPC1L1) protein. NPC1L1 is expressed on enterocytes/gut lumen (apical) as well as the hepatobiliary (canalicular) interface and plays a role in facilitating internalization of free cholesterol into the enterocyte in conjunction with the adaptor protein 2 (AP2) complex and clathrin. Once cholesterol in the gut lumen or bile is incorporated into the cell membrane of enterocytes, it binds to the sterol-sensing domain of NPC1L1 and forms a NPC1L1/cholesterol complex. The complex is then internalized or endocytosed by joining to AP2 clathrin, forming a vesicle complex that is translocated for storage in the endocytic recycling compartment.

Ezetimibe does not require exocrine pancreatic function for its pharmacological activity; rather, it localizes and appears to act at the brush border of the small intestine. Ezetimibe selectively blocks the NPC1L1 protein in the jejunal brush border, reducing the uptake of intestinal lumen micelles into the enterocyte. Overall, ezetimibe causes a decrease in the delivery of intestinal cholesterol to the liver and reduction of hepatic cholesterol stores and an increase in clearance of cholesterol from the blood. While the full mechanism of action of ezetimibe in reducing the entry of cholesterol into both enterocytes and hepatocytes is not fully understood, one study proposed that ezetimibe prevents the NPC1L1/sterol complex from interacting with AP2 in clathrin coated vesicles and induces a conformational change in NPC1L1, rendering it incapable of binding to sterols. Another study suggested that ezetimibe disrupts the function of other protein complexes involved in regulating cholesterol uptake, including the CAV1–annexin 2 heterocomplex.

Rosuvastatin is a statin medication and a competitive inhibitor of the enzyme HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase, which catalyzes the conversion of HMG-CoA to mevalonate, an early rate-limiting step in cholesterol biosynthesis. Rosuvastatin acts primarily in the liver, where decreased hepatic cholesterol concentrations stimulate the upregulation of hepatic low density lipoprotein (LDL) receptors which increases hepatic uptake of LDL. Rosuvastatin also inhibits hepatic synthesis of very low density lipoprotein (VLDL). The overall effect is a decrease in plasma LDL and VLDL.

In vitro and in vivo animal studies also demonstrate that rosuvastatin exerts vasculoprotective effects independent of its lipid-lowering properties, also known as the pleiotropic effects of statins. This includes improvement in endothelial function, enhanced stability of atherosclerotic plaques, reduced oxidative stress and inflammation, and inhibition of the thrombogenic response.

Statins have also been found to bind allosterically to β2 integrin function-associated antigen-1 (LFA-1), which plays an important role in leukocyte trafficking and in T cell activation.

Rosuvastatin exerts an anti-inflammatory effect on rat mesenteric microvascular endothelium by attenuating leukocyte rolling, adherence and transmigration. The drug also modulates nitric oxide synthase (NOS) expression and reduces ischemic-reperfusion injuries in rat hearts. Rosuvastatin increases the bioavailability of nitric oxide by upregulating NOS and by increasing the stability of NOS through post-transcriptional polyadenylation. It is unclear as to how rosuvastatin brings about these effects though they may be due to decreased concentrations of mevalonic acid.

Dosage

Consivas Ez dosage

The recommended dose of Ezetimibe is 10 mg once daily. Ezetimibe can be administered with or without food.

Before treatment initiation the patient should be placed on a standard cholesterol-lowering diet that should continue during treatment. The dose should be individualized according to the goal of therapy and patient response, using current consensus guidelines.

Treatment of hypercholesterolemia: Patient of Asian origin or with risk factors for myopathy or rhabdomyolysis: initially 5 mg once daily increased if necessary to max. 20 mg daily.

Prevention of cardiovascular events: Patient of Asian origin or with risk factors for myopathy or rhabdomyolysis: initially 5 mg once daily increased if necessary to max. 20 mg daily.

Pediatric Use (Hyperlipidemia including familial hypercholesterolemia):

  • Child younger than 6 years: not recommended.
  • Child 6–9 years: initially 5 mg daily, increased if necessary at intervals of at least 4 weeks to usual max. 10 mg once daily.
  • Child 10–18 years: initially 5 mg daily, increased if necessary at intervals of at least 4 weeks to usual max. 20 mg once daily.

[Reduced dose required with concomitant atazanavir, darunavir, ezetimibe, fibrate, itraconazole, lopinavir, or tipranavir]

Use in the elderly (>70 years): A start dose of 5 mg is recommended. No dose adjustment necessary.

Renal insufficiency:Initially 5mg once daily (do not exceed 20 mg daily) if eGFR is 30-60 mL/minute/1.73 m2. Avoid if eGFR is less than 30 mL/minute/1.73 m2

Hepatic impairment:

  • Child-Pugh scores of <7: no increase in systemic exposure to rosuvastatin.
  • Child-Pugh scores of 8 and 9: increased systemic exposure has been observed. In these patients an assessment of renalfunction should be considered.
  • Child-Pugh scores >9: no study.

Rosuvastatin is contraindicated in patients withactive liver disease.

Race: Increased systemic exposure has been seen in Asian subjects. The recommended starting dose is 5 mg for patients of Asian ancestry. The 40 mg dose is contraindicated in these patients.

Genetic polymorphisms: Specific types of genetic polymorphisms are known that can lead to increased rosuvastatin exposure. For patients who are known to have such specific types of polymorphisms, a lower daily dose of Rosuvastatin is recommended.

Dosage in patients with pre-disposing factors to myopathy: The recommended starting dose is 5 mg in patients with predisposing factors to myopathy. The 40 mg dose is contraindicated in some of these patients.

Rosuvastatin may be given at any time of day, with or without food

Side Effects

Clinical studies of Ezetimibe (administered alone or with an HMG-CoA reductaseinhibitor) demonstrated that Ezetimibe was generally well tolerated. The overallincidence of adverse events reported with Ezetimibe was similar to that reported withplacebo, and the discontinuation rate due to adverse events was also similar for Ezetimibeand placebo.

Common or very common: Proteinuria.

Rare: Hepatitis, jaundice.

Very rare: Gynecomastia, hematuria, hepati failure, interstitial lung disease, lupus erythematosus-like reactions, pancreatitis.

Frequency not known: Alopecia, altered liver function tests, amnesia, arthralgia, asthenia, depression, dizziness, edema, fatigue, gastrointestinal disturbances, headache, hypersensitivity reactions, hyperglycemia -may be associated with the development of diabetes mellitus (particularly in those already at risk of the condition), myalgia, myopathy, myositis, paresthesia, peripheral neuropathy, pruritus, rash, rhabdomyolysis, sexual dysfunction, sleep disturbance, Stevens-Johnson syndrome, thrombocytopenia, urticaria, visual disturbance.

Muscle effects: The risk of myopathy, myositis, and rhabdomyolysis associated with statin use is rare. Although myalgia has been reported commonly in patients receiving statins, muscle toxicity truly attributable to statin use is rare. Muscle toxicity can occur with all statins, however the likelihood increases with higher doses If muscular symptoms or raised creatine kinase occur during treatment, other possible causes (e.g. rigorous physical activity, hypothyroidism, infection, recent trauma, and drug or alcohol addiction) should be excluded before statin therapy is implicated, particularly if statin treatment has previously been tolerated for more than 3 months. When a statin is suspected to be the cause of myopathy, and creatine kinase concentration is markedly elevated (more than 5 times upper limit of normal), or if muscular symptoms are severe, treatment should be discontinued. If symptoms resolve and creatine kinase concentrations return to normal, the statin should be reintroduced at a lower dose and the patient monitored closely; an alternative statin should be prescribed if unacceptable side-effects are experienced with a particular statin. Statins should not be discontinued in the event of small, asymptomatic elevations of creatine kinase. Routine monitoring of creatine kinase is unnecessary in asymptomatic patients.Statins should not be discontinued if there is an increase in the blood-glucose concentration or HbA1C as the benefits continue to outweigh the risks.

Interstitial lung disease: If patients develop symptoms such as dyspnoea, cough, and weight loss, they should seek medical attention.

Toxicity

Oral LD50 and intraperitoneal LD50 in rat were >2000 mg/kg. Estimated oral LD50 values in mouse and dog are >5000 mg/kg and >3000 mg/kg, respectively. One case of accidental overdose occurred in clinical studies in one female patient with homozygous sitosterolemia receiving 120 mg/day for 28 days with no reported clinical or laboratory adverse events. In case of overdose, symptomatic treatment is recommended.

Generally well-tolerated. Side effects may include myalgia, constipation, asthenia, abdominal pain, and nausea. Other possible side effects include myotoxicity (myopathy, myositis, rhabdomyolysis) and hepatotoxicity. To avoid toxicity in Asian patients, lower doses should be considered. Pharmacokinetic studies show an approximately two-fold increase in peak plasma concentration and AUC in Asian patients (Philippino, Chinese, Japanese, Korean, Vietnamese, or Asian-Indian descent) compared to Caucasian patients.

Precaution

Exclude or treat secondary causes of dyslipidaemia prior to initiating therapy. Renal and hepatic impairment. Pregnancy and lactation.

Hypothyroidism should be managed adequately before starting treatment with a statin. Statins should be used with caution in those with a history of liver disease or with a high alcohol intake. There is little information available on a rational approach to liver-function monitoring; however, a NICE guideline1 suggests that liver enzymes should be measured before treatment, and repeated within 3 months and at 12 months of starting treatment, unless indicated at other times by signs or symptoms suggestive of hepatotoxicity. Those with serum transaminases that are raised, but less than 3 times the upper limit of the reference range, should not be routinely excluded from statin therapy. Those with serum transaminases of more than 3 times the upper limit of the reference range should discontinue statin therapy.

Statins should be used with caution in those with risk factors for myopathy or rhabdomyolysis; patients should be advised to report unexplained muscle pain. Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose galactose malabsorption should not take this medicine.

Interaction

Fibrates may increase cholesterol excretion into the bile, leading to cholelithiasis. In a preclinical study in animals, Ezetimibe increased cholesterol in the gallbladder bile. Coadministration of Ezetimibe with fibrates is not therefore recommended until use in patients is studied.

Cyclosporine: Cyclosporine increased rosuvastatin exposure (AUC) 7-fold. Therefore, in patients taking cyclosporine, the dose of Rosuvastatin should not exceed 5 mg once daily.

Gemfibrozil: Gemfibrozil significantly increased rosuvastatin exposure. Due to an observed increased risk of myopathy/rhabdomyolysis, combination therapy with Rosuvastatin and gemfibrozil should be avoided. If used together, the dose of Rosuvastatin should not exceed 10 mg once daily.

Protease Inhibitors: Coadministration of rosuvastatin with certain protease inhibitors has differing effects on rosuvastatin exposure. Simeprevir, which is a hepatitis C virus (HCV) protease inhibitor, or combinations of atazanavir/ritonavir or lopinavir/ritonavir, which are HIV-1 protease inhibitors, increase rosuvastatin exposure (AUC) up to threefold. For these protease inhibitors, the dose of Rosuvastatin should not exceed 10 mg once daily. The combinations of fosamprenavir / ritonavir or tipranavir / ritonavir, which are HIV 1 protease inhibitors, produce little or no change in rosuvastatin exposure. Caution should be exercised when rosuvastatin is coadministered with protease inhibitors.

Coumarin Anticoagulants: Rosuvastatin significantly increased INR in patients receiving coumarin anticoagulants. Therefore, caution should be exercised when coumarin anticoagulants are given in conjunction with Rosuvastatin. In patients taking coumarin anticoagulants and Rosuvastatin concomitantly, INR should be determined before starting Rosuvastatin and frequently enough during early therapy to ensure that no significant alteration of INR occurs.

Niacin: The risk of skeletal muscle effects may be enhanced when Rosuvastatin is used in combination with lipid-modifying doses (>1 g/day) of niacin; caution should be used when prescribing with Rosuvastatin.

Fenofibrate: When Rosuvastatin was coadministered with fenofibrate, no clinically significant increase in the AUC of rosuvastatin or fenofibrate was observed. Because it is known that the risk of myopathy during treatment with statins is increased with concomitant use of fenofibrates, caution should be used when prescribing fenofibrates with Rosuvastatin.

Colchicine: Cases of myopathy, including rhabdomyolysis, have been reported with statins, including rosuvastatin, coadministered with colchicine, and caution should be exercised when prescribing Rosuvastatin with colchicine

Volume of Distribution

The relative volume of distribution of ezetimibe is 107.5L.

Rosuvastatin undergoes first-pass extraction in the liver, which is the primary site of cholesterol synthesis and LDL-C clearance. The mean volume of distribution at steady-state of rosuvastatin is approximately 134 litres.

Elimination Route

Administration of a single 10-mg dose of ezetimibe in fasted adults resulted in peak plasma concentrations (Cmax) of 3.4-5.5 ng/mL within 4-12 hours (Tmax). The Cmax of the major pharmacologically-active metabolite, ezetimibe-glucuronide, was 45-71 ng/mL and its Tmax was 1-2 hours. Food consumption has minimal effect on ezetimibe absorption, but the Cmax is increased by 38% when administered alongside a high-fat meal. The true bioavailability of ezetimibe cannot be determined, as it is insoluble in aqueous media suitable for intravenous injection.

In a study of healthy white male volunteers, the absolute oral bioavailability of rosuvastatin was found to be approximately 20% while absorption was estimated to be 50%, which is consistent with a substantial first-pass effect after oral dosing. Another study in healthy volunteers found that the peak plasma concentration (Cmax) of rosuvastatin was 6.06ng/mL and was reached at a median of 5 hours following oral dosing. Both Cmax and AUC increased in approximate proportion to dose. Neither food nor evening versus morning administration was shown to have an effect on the AUC of rosuvastatin. Many statins are known to interact with hepatic uptake transporters and thus reach high concentrations at their site of action in the liver.

Breast Cancer Resistance Protein (BCRP) is a membrane-bound protein that plays an important role in the absorption of rosuvastatin, particularly as CYP3A4 has minimal involvement in its metabolism. Evidence from pharmacogenetic studies of c.421C>A single nucleotide polymorphisms (SNPs) in the gene for BCRP has demonstrated that individuals with the 421AA genotype have reduced functional activity and 2.4-fold higher AUC and Cmax values for rosuvastatin compared to study individuals with the control 421CC genotype. This has important implications for the variation in response to the drug in terms of efficacy and toxicity, particularly as the BCRP c.421C>A polymorphism occurs more frequently in Asian populations than in Caucasians. Other statin drugs impacted by this polymorphism include fluvastatin and atorvastatin.

Genetic differences in the OATP1B1 (organic-anion-transporting polypeptide 1B1) hepatic transporter have also been shown to impact rosuvastatin pharmacokinetics. Evidence from pharmacogenetic studies of the c.521T>C SNP showed that rosuvastatin AUC was increased 1.62-fold for individuals homozygous for 521CC compared to homozygous 521TT individuals. Other statin drugs impacted by this polymorphism include simvastatin, pitavastatin, atorvastatin, and pravastatin.

For patients known to have the above-mentioned c.421AA BCRP or c.521CC OATP1B1 genotypes, a maximum daily dose of 20mg of rosuvastatin is recommended to avoid adverse effects from the increased exposure to the drug, such as muscle pain and risk of rhabdomyolysis.

Half Life

Both ezetimibe and ezetimibe-glucuronide display an approximate half-life of 22 hours.

The elimination half-life (t½) of rosuvastatin is approximately 19 hours and does not increase with increasing doses.

Clearance

There are no pharmacokinetic data available on the clearance of ezetimibe.

Elimination Route

Approximately 78% and 11% of orally administered radiolabelled ezetimibe are recovered in the feces and urine, respectively. Unchanged parent drug is the major component in feces and accounts for approximately 69% of an administered dose, while ezetimibe-glucuronide is the major component in urine and accounts for approximately 9% of an administered dose. High recovery of unchanged parent drug in feces suggests low absorption and/or hydrolysis of ezetimibe-glucuronide secreted in the bile.

Rosuvastatin is not extensively metabolized; approximately 10% of a radiolabeled dose is recovered as metabolite. Following oral administration, rosuvastatin and its metabolites are primarily excreted in the feces (90%). After an intravenous dose, approximately 28% of total body clearance was via the renal route, and 72% by the hepatic route.

A study in healthy adult male volunteers found that approximately 90% of the rosuvastatin dose was recovered in feces within 72 hours after dose, while the remaining 10% was recovered in urine. The drug was completely excreted from the body after 10 days of dosing. They also found that approximately 76.8% of the excreted dose was unchanged from the parent compound, with the remaining dose recovered as the metabolites n-desmethyl rosuvastatin and rosuvastatin-5S-lactone.

Renal tubular secretion is responsible for >90% of total renal clearance, and is believed to be mediated primarily by the uptake transporter OAT3 (Organic anion transporter 1), while OAT1 had minimal involvement.

Pregnancy & Breastfeeding use

There are no adequate and well-controlled studies of Ezetimibe in pregnant women. Ezetimibe should be used during pregnancy only if the potential benefit justifies the risk to the fetus

Pregnancy Category X. Teratogenic effects. Rosuvastatin is contraindicated in pregnancy and lactation. Women of child bearing potential should use appropriate contraceptive measures. If a patient becomes pregnant during use of this product, treatment should be discontinued immediately.

Rosuvastatin is excreted in the milk of rats. There are no data with respect to excretion in milk in humans

Contraindication

Hypersensitivity to any component of this medication. The combination of Ezetimibewith an HMG-CoA reductase inhibitor is contraindicated in patients with active liverdisease or unexplained persistent elevations in serum transaminases.

Rosuvastatin is contraindicated:

  • In patients with hypersensitivity to rosuvastatin or to any of the excipients.
  • In patients with active liver disease including unexplained, persistent elevations of serum transaminases and any serum transaminase elevation exceeding 3 x the upper limit of normal (ULN).
  • In patients with severe renal impairment (creatinine clearance < mL/minute/1.73m2).
  • In patients with myopathy.
  • In patients receiving concomitant cyclosporine.
  • During pregnancy and lactation and in women of childbearing potential not using appropriate contraceptive measures.

Special Warning

Pediatric Use-

10 to 17 years: No dosage adjustment is required. The clinical experience in pediatric and adolescent patients is however limited. When Ezetimibe is administered with statin, the dosage instructions for statin, in adolescents should be consulted.

Children < 10 years: Ezetimibe is not recommended for use in children below age 10 due to insufficient data on safety and efficacy.

Age and sex: There was no clinically relevant effect of age or sex on the pharmacokinetics of Rosuvastatin in adults.

Race: Pharmacokinetic studies show an increase in exposure in Asian subjects compared with Caucasians.

Severe renal impairment (not on hemodialysis): Starting dose is 5 mg, not to exceed 10 mg

Use in the elderly: Patients > 70 years: A start dose of 5 mg is recommended. No dose adjustment necessary.

Renal insufficiency: Initially 5mg once daily (do not exceed 20mg daily) if eGFR is 30–60 mL/ minute/ 1.73 m2. Avoid if eGFR is less than 30 mL /minute/ 1.73 m2.

Genetic polymorphisms: Specific types of genetic polymorphisms are known that can lead to increased rosuvastatin exposure. For patients who are known to have such specific types of polymorphisms, a lower daily dose of Rosuvastatin is recommended.

Dosage in patients with pre-disposing factors to myopathy: The recommended starting dose is 5 mg in patients with predisposing factors to myopathy. The 40 mg dose is contraindicated in some of these patients.

Acute Overdose

No cases of overdosage with Ezetimibe have been reported. Administration of Ezetimibe,50 mg/day, to 15 subjects for up to 14 days was generally well tolerated. In the event ofan overdose, symptomatic and supportive measures should be employed.

There is no specific treatment in the event of overdose. In the event of overdose, the patient should be treated symptomatically and supportive measures instituted as required. Haemodialysis is unlikely to be of benefit.

Storage Condition

Store in a cool & dry place protected from light and moisture. Keep out of reach of children.

Keep out of the reach of children. Store below 30° C. Keep in the original package in a cool & dry place in order to protect from light and moisture.

Innovators Monograph


*** Taking medicines without doctor's advice can cause long-term problems.
Share