Dialyvite with Zinc

Dialyvite with Zinc Uses, Dosage, Side Effects, Food Interaction and all others data.

vitamin C, the water-soluble vitamin, is readily absorbed from the gastrointestinal tract and is widely distributed in the body tissues. It is believed to be involved in biological oxidations and reductions used in cellular respiration. It is essential for the synthesis of collagen and intracellular material. Vitamin C deficiency develops when the dietary intake is inadequate and when increased demand is not fulfilled. Deficiency leads to the development of well defined syndrome known as scurvy, which is characterized by capillary fragility, bleeding (especially from small blood vessels and the gums), anaemia, cartilage and bone lesions and slow healing of wounds.

Ascorbic Acid (vitamin C) is a water-soluble vitamin indicated for the prevention and treatment of scurvy, as ascorbic acid deficiency results in scurvy. Collagenous structures are primarily affected, and lesions develop in bones and blood vessels. Administration of ascorbic acid completely reverses the symptoms of ascorbic acid deficiency.

A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk.

Biotin is a water-soluble B-complex vitamin which is composed of an ureido ring fused with a tetrahydrothiophene ring, which attaches a valeric acid substituent at one of its carbon atoms. Biotin is used in cell growth, the production of fatty acids, metabolism of fats, and amino acids. It plays a role in the Kreb cycle, which is the process in which energy is released from food. Biotin not only assists in various metabolic chemical conversions, but also helps with the transfer of carbon dioxide. Biotin is also helpful in maintaining a steady blood sugar level. Biotin is often recommended for strengthening hair and nails. Consequenty, it is found in many cosmetic and health products for the hair and skin. Biotin deficiency is a rare nutritional disorder caused by a deficiency of biotin. Initial symptoms of biotin deficiency include: Dry skin, Seborrheic dermatitis, Fungal infections, rashes including erythematous periorofacial macular rash, fine and brittle hair, and hair loss or total alopecia. If left untreated, neurological symptoms can develop, including mild depression, which may progress to profound lassitude and, eventually, to somnolence; changes in mental status, generalized muscular pains (myalgias), hyperesthesias and paresthesias. The treatment for biotin deficiency is to simply start taking some biotin supplements. A lack of biotin in infants will lead to a condition called seborrheic dermatitis or "cradle cap". Biotin deficiencies are extremely rare in adults but if it does occur, it will lead to anemia, depression, hair loss, high blood sugar levels, muscle pain, nausea, loss of appetite and inflamed mucous membranes.

Calcium is used to prevent or treat negative calcium balance. It also helps facilitate nerve and muscle performance as well as normal cardiac function. Bone mineral component; cofoactor in enzymatic reactions, essential for neurotransmission, muscle contraction, and many signal transduction pathways.

Folic acid is essential for the production of certain coenzymes in many metabolic systems such as purine and pyrimidine synthesis. It is also essential in the synthesis and maintenance of nucleoprotein in erythropoesis. It also promotes WBC and platelet production in folate-deficiency anaemia.

Folic acid is a water-soluble B-complex vitamin found in foods such as liver, kidney, yeast, and leafy, green vegetables. Also known as folate or Vitamin B9, folic acid is an essential cofactor for enzymes involved in DNA and RNA synthesis. More specifically, folic acid is required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. Folic acid is the precursor of tetrahydrofolic acid, which is involved as a cofactor for transformylation reactions in the biosynthesis of purines and thymidylates of nucleic acids. Impairment of thymidylate synthesis in patients with folic acid deficiency is thought to account for the defective deoxyribonucleic acid (DNA) synthesis that leads to megaloblast formation and megaloblastic and macrocytic anemias. Folic acid is particularly important during phases of rapid cell division, such as infancy, pregnancy, and erythropoiesis, and plays a protective factor in the development of cancer. As humans are unable to synthesize folic acid endogenously, diet and supplementation is necessary to prevent deficiencies. In order to function properly within the body, folic acid must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted by anti-metabolite therapies such as Methotrexate as they function as DHFR inhibitors to prevent DNA synthesis in rapidly dividing cells, and therefore prevent the formation of DHF and THF.

In general, folate serum levels below 5 ng/mL indicate folate deficiency, and levels below 2 ng/mL usually result in megaloblastic anemia.

Riboflavin is a B vitamin. It can be found in certain foods such as milk, meat, eggs, nuts, enriched flour, and green vegetables. Riboflavin is frequently used in combination with other B vitamins in vitamin B complex products. Vitamin B complex generally includes vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin/niacinamide), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B12 (cyanocobalamin), and folic acid. However, some products do not contain all of these ingredients and some may include others, such as biotin, para-aminobenzoic acid (PABA), choline bitartrate, and inositol.

Riboflavin is used for preventing low levels of riboflavin (riboflavin deficiency), cervical cancer, and migraine headaches. It is also used for treating riboflavin deficiency, acne, muscle cramps, burning feet syndrome, carpal tunnel syndrome, and blood disorders such as congenital methemoglobinemia and red blood cell aplasia. Some people use riboflavin for eye conditions including eye fatigue, cataracts, and glaucoma.

Other uses include increasing energy levels; boosting immune system function; maintaining healthy hair, skin, mucous membranes, and nails; slowing aging; boosting athletic performance; promoting healthy reproductive function; canker sores; memory loss, including Alzheimer's disease; ulcers; burns; alcoholism; liver disease; sickle cell anemia; and treating lactic acidosis brought on by treatment with a class of AIDS medications called NRTI drugs.

Riboflavin or vitamin B2 is an easily absorbed, water-soluble micronutrient with a key role in maintaining human health. Like the other B vitamins, it supports energy production by aiding in the metabolising of fats, carbohydrates, and proteins. Vitamin B2 is also required for red blood cell formation and respiration, antibody production, and for regulating human growth and reproduction. It is essential for healthy skin, nails, hair growth and general good health, including regulating thyroid activity. Riboflavin also helps in the prevention or treatment of many types of eye disorders, including some cases of cataracts.

Zinc citrate is a zinc salt of citric acid. It is available as dietary supplements as a treatment of zinc deficiency and source of zinc, which is an essential trace element. Zinc citrate demonstrates effective absorption following oral administration .

Trade Name Dialyvite with Zinc
Generic Ascorbic acid + thiamine mononitrate + riboflavin + niacinamide + pyridoxine hydrochloride + folic acid + cobalamin + biotin + calcium pantothenate + zinc citrate
Type Tablet, coated
Therapeutic Class
Manufacturer
Available Country United States
Last Updated: September 19, 2023 at 7:00 am
Dialyvite with Zinc
Dialyvite with Zinc

Uses

Vitamin C is used for prevention and treatment of scurvy. It may be used for pregnancy, lactation, infection, trauma, burns, cold exposure, following surgery, fever, stress, peptic ulcer, cancer, methaemoglobinaemia and in infants receiving unfortified formulas. It is also prescribed for haematuria, dental caries, pyorrhea, acne, infertility, atherosclerosis, fractures, leg ulcers, hay fever, vascular thrombosis prevention, levodopa toxicity, succinyl-choline toxicity, arsenic toxicity etc. To reduce the risk of stroke in the elderly, long-term supplementation with Vitamin C is essential.

Biotin is a B-complex vitamin found in many multivitamin products.

For nutritional supplementation, also for treating dietary shortage or imbalance.

Calcium Pantothenate is used as a calcium supplement, dietary supplements, burning feet syndrome, greying hair, peripheral neuritis, muscular cramps.

Prophylaxis of megaloblastic anaemia in pregnancy, Supplement for women of child-bearing potential, Folate-deficient megaloblastic anaemia, Prophylaxis of neural tube defect in pregnancy

Preventing and treating riboflavin deficiency and conditions related to riboflavin deficiency.

Cataracts, an eye disorder. People who eat more riboflavin as part of their diet seems to have a lower risk of developing cataracts. Also, taking supplements containing riboflavin plus niacin seems to help prevent cataracts.

High amounts of homocysteine in the blood (hyperhomocysteinemia). Some people are unable to convert the chemical homocysteine into the amino acid methionine. People with this condition, especially those with low riboflavin levels, have high amounts of homocysteine in the blood. Taking riboflavin for 12 weeks seems to reduce homocysteine levels by up to 40% in some people with this condition. Also, certain antiseizure drugs can increase homocysteine in the blood. Taking riboflavin along with folic acid and pyridoxine seems to lower homocysteine levels by 26% in people with high homocysteine levels due to antiseizure drugs.

Migraine headaches. Taking high-dose riboflavin (400 mg/day) seems to significantly reduce the number of migraine headache attacks. However, taking riboflavin does not appear to reduce the amount of pain or the amount of time a migraine headache lasts. Also, taking lower doses of riboflavin (200 mg/day) does not seem to reduce the number of migraine headache attacks.

Zinc citrate is an ingredient found in a variety of supplements and vitamins.

Dialyvite with Zinc is also used to associated treatment for these conditions: Common Cold, Deficiency, Vitamin A, Deficiency, Vitamin D, Fever, Flu caused by Influenza, Folate deficiency, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Oral bacterial infection, Scurvy, Vitamin C Deficiency, Vitamin Deficiency, Nutritional supplementation, Vitamin supplementationVitamin Deficiency, Nutritional supplementationAnaemia folate deficiency, Folate deficiency, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Latent Iron Deficiency, Neural Tube Defects (NTDs), Vitamin Deficiency, Methotrexate toxicity, Nutritional supplementationAriboflavinosis, Beriberi, Constipation, Functional Gastrointestinal Disorders, Joint Pain, Metabolic cardiomyopathy, Migraine, Neuralgia, Peripheral neuritis, Peripheral paralysis, Soreness, Muscle, Vitamin B complex deficiency, Vitamin B1 deficiency, Vitamin Deficiency, Wernicke's encephalopathy, Dietary and Nutritional Therapies, Nutritional supplementation, Vitamin supplementation, Dietary supplementation

How Dialyvite with Zinc works

In humans, an exogenous source of ascorbic acid is required for collagen formation and tissue repair by acting as a cofactor in the posttranslational formation of 4-hydroxyproline in -Xaa-Pro-Gly- sequences in collagens and other proteins. Ascorbic acid is reversibly oxidized to dehydroascorbic acid in the body. These two forms of the vitamin are believed to be important in oxidation-reduction reactions. The vitamin is involved in tyrosine metabolism, conversion of folic acid to folinic acid, carbohydrate metabolism, synthesis of lipids and proteins, iron metabolism, resistance to infections, and cellular respiration.

Biotin is necessary for the proper functioning of enzymes that transport carboxyl units and fix carbon dioxide, and is required for various metabolic functions, including gluconeogenesis, lipogenesis, fatty acid biosynthesis, propionate metabolism, and catabolism of branched-chain amino acids.

Folic acid, as it is biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by dihydrofolate reductase (DHFR). These folic acid congeners are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids, methylate tRNA, and generate and use formate. Using vitamin B12 as a cofactor, folic acid can normalize high homocysteine levels by remethylation of homocysteine to methionine via methionine synthetase.

Binds to riboflavin hydrogenase, riboflavin kinase, and riboflavin synthase. Riboflavin is the precursor of flavin mononucleotide (FMN, riboflavin monophosphate) and flavin adenine dinucleotide (FAD). The antioxidant activity of riboflavin is principally derived from its role as a precursor of FAD and the role of this cofactor in the production of the antioxidant reduced glutathione. Reduced glutathione is the cofactor of the selenium-containing glutathione peroxidases among other things. The glutathione peroxidases are major antioxidant enzymes. Reduced glutathione is generated by the FAD-containing enzyme glutathione reductase.

Dosage

Dialyvite with Zinc dosage

vitamin C is usually administered orally. When oral administration is not feasible or when malabsorption is suspected, the drug may be administered IM, IV, or subcutaneously. When given parenterally, utilization of the vitamin reportedly is best after IM administration and that is the preferred parenteral route.

For intravenous injection, dilution into a large volume parenteral such as Normal Saline, Water for Injection, or Glucose is recommended to minimize the adverse reactions associated with intravenous injection.

The average protective dose of vitamin C for adults is 70 to 150 mg daily. In the presence of scurvy, doses of 300 mg to 1 g daily are recommended. However, as much as 6 g has been administered parenterally to normal adults without evidence of toxicity.

To enhance wound healing, doses of 300 to 500 mg daily for a week or ten days both preoperatively and postoperatively are generally considered adequate, although considerably larger amounts have been recommended. In the treatment of burns, doses are governed by the extent of tissue injury. For severe burns, daily doses of 1 to 2 g are recommended. In other conditions in which the need for vitamin C is increased, three to five times the daily optimum allowances appear to be adequate.

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever the solution and container permit.

Slow intravenous or deep intramuscularas required or as directed by physician.

Supplement for women of child-bearing potential: 0.4 mg daily.

Folate-deficient megaloblastic anaemia: 5 mg daily for 4 mth, up to 15 mg daily in malabsorption states. Continued dosing at 5 mg every 1-7 days may be needed in chronic haemolytic states, depending on the diet and rate of haemolysis.

Prophylaxis of neural tube defect in pregnancy: 4 or 5 mg daily starting before pregnancy and continued through the 1st trimester.

Prophylaxis of megaloblastic anaemia in pregnancy: 0.2-0.5 mg daily.

For treating low levels of riboflavin (riboflavin deficiency) in adults: 5-30 mg of riboflavin (Vitamin B2) daily in divided doses.

For preventing migraine headaches: 400 mg of riboflavin (Vitamin B2) per day. It may take up to three months to get best results.

For preventing cataracts: a daily dietary intake of approximately 2.6 mg of riboflavin (Vitamin B2) has been used. A combination of 3 mg of riboflavin (Vitamin B2) plus 40 mg of niacin daily has also been used.

The daily recommended dietary allowances (RDAs) of riboflavin (Vitamin B2) are:

  • Infants 0-6 months: 0.3 mg
  • Infants 7-12 months: 0.4 mg
  • Children 1-3 years: 0.5 mg
  • Children 4-8 years: 0.6 mg
  • Children 9-13 years: 0.9 mg
  • Men 14 years or older: 1.3 mg
  • Women 14-18 years: 1 mg
  • Women over 18 years: 1.1 mg
  • Pregnant women: 1.4 mg
  • Breastfeeding women: 1.6 mg

May be taken with or without food.

Side Effects

Ascorbic acid does not seem to have any important adverse effects at dosages less than 4 mg/day. Larger dose may cause diarrhoea or formation of renal calculi of calcium oxalate in patients with renal impairment. Ingestion of more than 600 mg daily have a diuretic action.

Mild gastrointestinal disturbances, bradicardia, arrythmia and irritation after IV injection

GI disturbances, hypersensitivity reactions; bronchospasm.

Get emergency medical help if you have signs of an allergic reaction: hives; difficult breathing; swelling of your face, lips, tongue, or throat. Riboflavin may cause your urine to turn a yellow-orange color, but this is usually not a harmful side effect.

Toxicity

Prolonged skin contact may cause irritation.

IPR-MUS LD50 85 mg/kg,IVN-GPG LD50 120 mg/kg, IVN-MUS LD50 239 mg/kg, IVN-RAT LD50 500 mg/kg, IVN-RBT LD50 410 mg/kg

Precaution

Ingestion of megadose (more than 1000 mg daily) of vitamin C during pregnancy has resulted in scurvy in neonates. Vitamin C in mega-doses has been contraindicated for patients with hyperoxaluria. Vitamin C itself is a reactive substance in the redox system and can give rise to false positive reactions in certain analytical tests for glucose, uric acid, creatine and occult blood.

Renal impairment, sarcoidosis, concurrent administration of thiazide diuretics may increase the risk of hypercalcaemia.

Treatment resistance may occur in patients with depressed haematopoiesis, alcoholism, deficiencies of other vitamins. Neonates.

Interaction

Potentially hazardous interactions: Ascorbic acid is incompatible in solution with aminophylline, bleomycin, erythromycin, lactobionate, nafcillin, nitrofurantoin sodium, conjugated oestrogen, sodium bicarbonate, sulphafurazole diethanolamine, chloramphenicol sodium succinate, chlorthiazide sodium and hydrocortisone sodium succinate.

Useful interactions: Ascorbic acid increases the apparent half-life of paracetamol and enhances iron absorption from the gastrointestinal tract.

There are no known drug interactions and none well documented.

Antiepileptics, oral contraceptives, anti-TB drugs, alcohol, aminopterin, methotrexate, pyrimethamine, trimethoprim and sulphonamides may result to decrease in serum folate contrations. Decreases serum phenytoin concentrations.

Rate and extent of absorption may be affected by propantheline bromide.

Volume of Distribution

Tetrahydrofolic acid derivatives are distributed to all body tissues but are stored primarily in the liver.

Elimination Route

70% to 90%

Systemic - approximately 50%

Folic acid is absorbed rapidly from the small intestine, primarily from the proximal portion. Naturally occurring conjugated folates are reduced enzymatically to folic acid in the gastrointestinal tract prior to absorption. Folic acid appears in the plasma approximately 15 to 30 minutes after an oral dose; peak levels are generally reached within 1 hour.

Vitamin B2 is readily absorbed from the upper gastrointestinal tract.

Half Life

16 days (3.4 hours in people who have excess levels of vitamin C)

66-84 minutes

Elimination Route

After a single oral dose of 100 mcg of folic acid in a limited number of normal adults, only a trace amount of the drug appeared in the urine. An oral dose of 5 mg in 1 study and a dose of 40 mcg/kg of body weight in another study resulted in approximately 50% of the dose appearing in the urine. After a single oral dose of 15 mg, up to 90% of the dose was recovered in the urine. A majority of the metabolic products appeared in the urine after 6 hours; excretion was generally complete within 24 hours. Small amounts of orally administered folic acid have also been recovered in the feces. Folic acid is also excreted in the milk of lactating mothers.

Pregnancy & Breastfeeding use

The drug is safe in normal doses in pregnant women, but a daily intake of 5 gm or more is reported to have caused abortion. The drug may be taken safely during lactation.

Pregnancy Category-C. Animal reproduction studies have shown an adverse effect on the fetus and there are no adequate and well-controlled studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks

Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).

Riboflavin is LIKELY SAFE for pregnant or breast-feeding women when taken in the amounts recommended. The recommended amounts are 1.4 mg per day for pregnant women and 1.6 mg per day in breast-feeding women. Riboflavin is POSSIBLY SAFE when taken by mouth in larger doses, short-term. Some research shows that riboflavin is safe when taken at a dose of 15 mg once every 2 weeks for 10 weeks.

Contraindication

Contraindicated in patients with hypercalcaemia, hypercalciuria.

Undiagnosed megaloblastic anaemia; pernicious, aplastic or normocytic anaemias.

Storage Condition

Should be stored in a dry place below 30˚C.

Store at 15-30° C.

Store at 15-30° C.

Innovators Monograph

You find simplified version here Dialyvite with Zinc


*** Taking medicines without doctor's advice can cause long-term problems.
Share