Duramax

Duramax Uses, Dosage, Side Effects, Food Interaction and all others data.

Chondroitin sulfate is a glycosaminoglycan considered as a symptomatic slow-acting drug for osteoarthritis (SYSADOA). The SYSADOA status suggested a pain relief and increased joint mobility after a relative long regular administration, as well as a long-lasting effect after the end of the treatment. Chondroitin sulfate is composed of alternating 1,3-N-acetyl-β-d-galactosamine and 1,4-β-d-glucuronic acid units which bear 4-O- and/or 6-O-sulfations at the N-acetylgalactosamine units disposed of in specific patterns. Depending on the predominating disaccharide unit, it will present different biological activities. Chondroitin sulfate is sold as an OTC dietary supplement in North America and it is a prescription drug under the EMA in Europe.

In clinical trials, chondroitin sulfate has been reported a significant pain relief. Some reports have shown no slow in joint damage. The effects of chondroitin sulfate have been very controversial. One of the characteristics of chondroitin is a slow onset of action with a maximal effect attained after several months. Chondroitin sulfate has been reported to have anti-inflammatory properties by reducing the synovitis and prevent proinflammatory cytokine up-regulation in arthritis models.

It is also registered an anabolic effect of chondroitin sulfate in which it induces the synthesis of hyaluronate in synovial cells, it increases type II collagen and proteoglycan synthesis.

Hyaluronic acid (HA) is an anionic, nonsulfated glycosaminoglycan found in connective, epithelial, and neural tissues; it was first isolated in 1934. Karl Meyer and John Palmer obtained glycosaminoglycan (GAG) from the bovine eye, giving it the name “hyaluronic acid”. HA is involved in many important physiological processes, including but not limited to wound healing, tissue regeneration, and joint lubrication. It demonstrates unique viscoelasticity, moisturizing, anti-inflammatory qualities, and other important properties that prove beneficial in various clinical applications.

HA is used in drug delivery systems for the treatment of cancer, ophthalmological conditions, joint conditions, and aesthetic imperfections. Several preparations of hyaluronic acid have been approved by the FDA and are available in oral, topical, and injectable forms. A popular use of hyaluronic acid in recent years is cosmetic injection due to its ability to minimize the appearance of wrinkles and aging-related skin imperfections.

HA has long-acting lubricant, shock absorbing, joint stabilizing, and water balancing properties. It is similar to the naturally occurring glycosaminoglycan (GAG) in joints. Hyaluronic acid works by acting as a lubricant and shock absorber, facilitating joint mobility and thereby reducing osteoarthritic pain. Hyaluronic acid has antioxidative, anti-inflammatory, and analgesic effects. The water-balancing properties and viscoelasticity of hyaluronic acid are beneficial in cosmetic injections, imparting volume and reducing the appearance of imperfections and wrinkles. Due to the abovementioned properties, HA has a protective effect on the eyes and cornea.

Trade Name Duramax
Generic Boswellia + Glucosamine Sulphate + Methyl Sulphonyl Methane + Hyaluronic Acid + Vitamin C / Ascorbic Acid + Chondroitin Sulfate + Curcumin Longa Extract
Weight 200mg,
Type Tablet, Oral Liquid, Oral Suspension, Oral Syrup, Oral Tablet, Extended Release
Therapeutic Class
Manufacturer Medok Life Sciences Pvt Ltd
Available Country India, United States
Last Updated: September 19, 2023 at 7:00 am
Duramax
Duramax

Uses

Chondroitin sulfate, used with glucosamine, is indicated to alleviate pain and inflammation from primary osteoarthritis. This supplement is reported to improve joint function and slow disease progression. Osteoarthritis is characterized by progressive structural and metabolic changes in joint tissues, mainly cartilage degradation, subchondral bone sclerosis and inflammation of synovial membrane.

Studies have proposed the potential use of chondroitin sulfate as a nutraceutical in dietary supplements.

Hyaluronic acid is a glycosaminoglycan used for the relief of joint pain, wound healing, ophthalmologic treatment, cosmetic treatment, and various other applications.

The intra-articular preparations of hyaluronic acid are indicated for knee pain associated with osteoarthritis. Hyaluronic acid is used in cosmetic applications to prevent and reduce the appearance of wrinkles on the face, and as a dermal filler to correct facial imperfections or other imperfections on other parts of the body. It is frequently an ingredient in topical applications for wound healing and symptomatic treatment of skin irritation from various causes. Hyaluronic acid may also be indicated in ophthalmological preparations or oral capsules to treat discomfort caused by dry eyes or conjunctivitis and for its protective qualities during and before eye surgery. Finally, hyaluronic acid can be used off-label to coat the bladder for relief of interstitial cystitis symptoms.

Duramax is also used to associated treatment for these conditions: Arthritis, Backache, Muscle Strain, Osteoarthritis (OA), Soreness, Muscle, Sprains, Eye lubrication, Joint supplementationActinic Keratosis (AK), Burns, Chronic Skin Ulcers, Conjunctivitis, Dehydration, Dermabrasion, Dermatosis, Dry Eyes, Facial Defect, Interstitial Cystitis, Keratoconjunctivitis, Ocular Irritation, Osteoarthritis (OA), Pain of the knee, Seasonal Allergic Conjunctivitis, Skin Burn, Skin Irritation, Skin fissures, Tissue Adhesions, Varicose Ulcers, Wounds, Eye discomfort, Facial fine wrinkling, Sensation of burning in the eyes, Superficial Wounds, Dermal Filler, Synovial Fluid Lubrication, Wound Healing

How Duramax works

Chondroitin sulfate functions as a major component of the intricate extracellular matrix. It is proposed that chondroitin sulfate supply can provide new building blocks for the synthesis of new matrix components.

The anti-inflammatory effect of chondroitin sulfate is thought to be caused by the inhibition of the synthesis of inflammatory intermediates such as the inhibition of nitric oxide synthase, COX-2, microsomal prostaglandin synthase 1 and prostaglandin E2. It is reported also an inhibitory activity in the toll-like receptor 4 which will later inhibit inflammatory cytokines, NFkB and MyD88. This activity suggests a modulation of the MAP kinase pathway. On the other hand, some reports have pointed out an induction on the PKC/PI3K/Akt pathway in neuroblastoma.

The anabolic effect of chondroitin sulfate is suggested to be caused by the inhibition of metalloproteinases such as MMP-1, -3 and -13 as well as ADAMTS-4 and -5.

General principles and hyaluronic acid receptor binding

Hyaluronic acid works by two basic mechanisms: serving as a passive structural molecule or serving as signaling molecule, depending on the molecule size. The physicochemical properties of high molecular weight HA contribute to passive structural effects, demonstrating hygroscopicity and viscoelasticity and improving hydration, water balance, and structural integrity. As a signalling molecule interacting with proteins, HA causes several opposing effects based on molecular weight: pro- or anti-inflammatory effects, promotion or inhibition of cell migration, and activating or inhibiting cell division.

Hyaluronic acid exerts its therapeutic effects through binding to three primary types of cell surface receptors: CD44 (a membrane glycoprotein), the receptor for hyaluronate-mediated motility (RHAMM), and the Intercellular Adhesion Molecule 1 (ICAM-1). CD44 is considered the most widely distributed receptor for hyaluronic acid, demonstrating cellular interactions with osteopontin, collagen, and matrix metalloproteinases (MMPs). High and low molecular weight hyaluronic acids demonstrate differing molecular and cellular mechanisms in their interaction with CD44 receptors. Some examples of these effects include modification of chondrocyte survival pathways in addition to alteration of apoptosis pathways. Lymphatic vessel endothelial hyaluronan receptor (LYVE-1), and hyaluronic acid receptor for endocytosis (HARE), (also known as Stabilin-2) also bind to hyaluronic acid.

Hyaluronic acid for skin conditions and cosmetics

Hyaluronic acid's anionic proprieties cause it to attract water and induce swelling, increasing tissue volume and skin structural integrity. The aging process is associated with reduced production of skin hyaluronic acid and collagen, causing the appearance of wrinkles and the loss of facial volume. Dermal fillers of hyaluronic acid replace lost tissue volume, imparting a full and youthful appearance to skin that has lost its elasticity. Hyaluronic acid fillers contain cross-linked hyaluronic acid particles, rendering a concentrated substance with resistance to various forms of physical and chemical breakdown. The cosmetic benefits of hyaluronic acid filler may last up to 6 months, depending on the brand and technique used for injection. Additionally, dermal hyaluronic acid fillers are known to increase the production of fibroblasts, supporting wound healing and offering relief from irritating and inflammatory skin conditions.

Hyaluronic acid for joint pain

Most cells in the human body are capable of synthesizing HA. It is a primary component of the extracellular matrix (ECM) and can be found in bone marrow, cartilage, and synovial fluid in joints. In osteoarthritis, the concentration of naturally occurring hyaluronic acid gradually decreases, lowering the viscosity of synovial fluid that protects joints from excess friction. Administration of intra-articular hyaluronic acid increases viscosity of synovial joint fluid, reducing friction and subsequently relieving painful arthritic symptoms.

Hyaluronic acid for ophthalmic conditions and ophthalmological procedures

Solutions of hyaluronic acid with a concentration greater than 0.1% moisturize the surface of the eyes to treat symptoms of dry eye while improving the stabilization of tear film, replenishing deficiencies of HA, reducing friction, and preventing binding of foreign substances to the ocular tissue. Hyaluronic acid is frequently used during and after ophthalmological surgeries and plays important roles by virtue of its moisturizing, viscoelastic, and protective properties. It promotes tissue healing of the corneal epithelium and other parts of the eye following ophthalmological surgery, minimizing the risk of adhesions and free radical formation.

Toxicity

Chondroitin sulfate does not present a carcinogenic potential. On tolerability assays, it has been shown to present great safety and good tolerability without significant severe side effects.

The oral LD50 of the sodium salt of hyaluronic acid is >800 mg/kg in the rat. Overdose information is not readily available in the literature. The safety profile for hyaluronic acid favourable, however, single case reports of death following vaginal injection of hyaluronic acid are published; the deaths likely occurred due to poor procedure regulation.

Volume of Distribution

After intramuscular administration of chondroitin sulfate, the apparent volume of distribution was 0.40 ml/g. When administered orally, the apparent volume of distribution changed to 0.44ml/g.

There is limited information in the literature regarding the human pharmacokinetics of hyaluronic acid. After a dermal filler injection, HA distributes rapidly into the superficial and deep dermis. Hyaluronic acid is distributed to skin of rats after intestinal metabolism into oligosaccharides. In rats and beagle dogs receiving oral hyaluronic acid, HA accumulated in the thyroid gland, kidneys, bladder, and stomach. HA was found to be concentrated in the vertebrae, joints, and salivary glands within 4 hours after a single dose. It is suggested by pharmacokinetic studies in animals that HA distributes into the lymphatic system.

Elimination Route

Chondroitin sulfate is absorbed from the gastrointestinal tract. The absorbed portion reaches a ratio of 10% as unchanged chondroitin sulfate and 90% as depolymerized low-molecular-weight derivatives. This absorption depends on the sulfation status. The bioavailability of chondroitin sulfate ranges from 10-20% following oral administration. Reports have shown a consistent accumulation of the compound in joint tissue. The steady-state is attained after 3-4 days and it takes around 3-6 months to obtain the maximal effect.

After intramuscular administration of chondroitin sulfate, the peak plasma level of 3.8 mcg/ml was reached after 90 min. When given orally, the peak plasma concentration of 4.6 mcg/ml was reached after 240 min.

There is limited information in the literature regarding the human absorption and pharmacokinetics of hyaluronic acid. When administered to rats in the oral form, hyaluronic acid is broken down to oligosaccharides by intestinal bacteria and absorbed in the colon. In pharmacokinetic studies of beagle dogs, HA was readily absorbed and rapidly excreted. When applied topically, HA with low molecular weight ranging from 20-300 kDa is absorbed through the stratum corneum, and HA with high molecular weight (1000-1400 kDa) does not penetrate the stratum corneum. The bioavailability of hyaluronic acid depends on its molecular weight.

Half Life

The approximate half-life of chondroitin sulfate and its derivative metabolites is 15 hours. After intramuscular administration of chondroitin sulfate in humans, the elimination half-life of the chondroitin sulfate was of 275 min. When administered orally, the elimination half-life was presented at 310 min.

When injected by the intra-articular route hyaluronic acid has a half-life ranging from 17 hours to 1.5 days. The half-life of hyaluronic acid is longer for purified or formulations or preparations with high molecular weight. It can vary according to the molecular weight of the administered HA, according to studies in animals. The metabolic half-life of hyaluronic acid in sheep was determined to be approximately 27 hours in pharmacokinetic studies. In sheep, HA is believed to undergo rapid elimination via the blood and liver.

Clearance

There is limited information in the literature regarding the human pharmacokinetics of hyaluronic acid. In a pharmacokinetic study of rabbits, maximum clearance capacity of intravenously administered hyaluronic acid was about 30 mg/day/kg.

Elimination Route

Chondroitin sulfate is excreted in the urine as intact polymers and as partial degradation products. After intramuscular administration, about 37% of the administered dose is excreted by urine during the first 24 hours as high- and low-molecular-weight derivatives.

There is limited information in the literature regarding the human pharmacokinetics of hyaluronic acid. Studies in rats and dogs administered a radio-labeled oral dose of HA showed 87-96% excretion the feces. Excretion of hyaluronic acid is primarily extra-renal, with some contribution from the spleen.

Innovators Monograph

You find simplified version here Duramax


*** Taking medicines without doctor's advice can cause long-term problems.
Share