Elgrape

Elgrape Uses, Dosage, Side Effects, Food Interaction and all others data.

Folic acid is essential for the production of certain coenzymes in many metabolic systems such as purine and pyrimidine synthesis. It is also essential in the synthesis and maintenance of nucleoprotein in erythropoesis. It also promotes WBC and platelet production in folate-deficiency anaemia.

Folic acid is a water-soluble B-complex vitamin found in foods such as liver, kidney, yeast, and leafy, green vegetables. Also known as folate or Vitamin B9, folic acid is an essential cofactor for enzymes involved in DNA and RNA synthesis. More specifically, folic acid is required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. Folic acid is the precursor of tetrahydrofolic acid, which is involved as a cofactor for transformylation reactions in the biosynthesis of purines and thymidylates of nucleic acids. Impairment of thymidylate synthesis in patients with folic acid deficiency is thought to account for the defective deoxyribonucleic acid (DNA) synthesis that leads to megaloblast formation and megaloblastic and macrocytic anemias. Folic acid is particularly important during phases of rapid cell division, such as infancy, pregnancy, and erythropoiesis, and plays a protective factor in the development of cancer. As humans are unable to synthesize folic acid endogenously, diet and supplementation is necessary to prevent deficiencies. In order to function properly within the body, folic acid must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted by anti-metabolite therapies such as Methotrexate as they function as DHFR inhibitors to prevent DNA synthesis in rapidly dividing cells, and therefore prevent the formation of DHF and THF.

In general, folate serum levels below 5 ng/mL indicate folate deficiency, and levels below 2 ng/mL usually result in megaloblastic anemia.

Lutein is an xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll (an excited form of chlorophyll), which is overproduced at very high light levels, during photosynthesis.

Lutein was found to be present in a concentrated area of the macula, a small area of the retina responsible for central vision. The hypothesis for the natural concentration is that lutein helps protect from oxidative stress and high-energy light. Several studies show that an increase in macula pigmentation decreases the risk for eye diseases such as Age-related Macular Degeneration (AMD).

Lycopene is a naturally occuring red carotenoid pigment that is responsible in red to pink colors seen in tomatoes, pink grapefruit, and other foods . Having a chemical formula of C40H56, lycopene is a tetraterpene assembled from eight isoprene units that are solely composed of carbon and hydrogen. Lycophene may undergo extensive isomerization that allows 1056 theoretical cis-trans configurations; however the all-trans configuration of lycopene is the most predominant isomer found in foods that gives the red hue. Lycopene is a non-essential human nutrient that is classified as a non-provitamin A carotenoid pigment since it lacks a terminal beta ionone ring and does not mediate vitamin A activity. However lycophene is a potent antioxidant molecule that scavenges reactive oxygen species (ROS) singlet oxygen. Tomato lycopene extract is used as a color additive in food products.

Vitamin A plays an essential role in the function of retina and is essential for growh and differentiation of epithelial tissue.

Vitamin A is effective for the treatment of Vitamin A deficiency. Vitamin A refers to a group of fat-soluble substances that are structurally related to and possess the biological activity of the parent substance of the group called all-trans retinol or retinol. Vitamin A plays vital roles in vision, epithelial differentiation, growth, reproduction, pattern formation during embryogenesis, bone development, hematopoiesis and brain development. It is also important for the maintenance of the proper functioning of the immune system.

Zinc sulfate is the inorganic compound with the formula ZnSO4 and historically known as "white vitriol". It is on the World Health Organization's List of Essential Medicines, a list of the most important medication needed in a basic health system.

Zinc has been identified as a cofactor for over 70 different enzymes, including alkaline phosphatase, lactic dehydrogenase and both RNA and DNA polymerase. Zinc facilitates wound healing, helps maintain normal growth rates, normal skin hydration and the senses of taste and smell.

Trade Name Elgrape
Generic Folic Acid + Grape Seed Extract + Lutein + Lycopene + Selenium Dioxide + Vitamin A + Vitamin B1 + Vitamin B12 + Vitamin B2 + Vitamin B6 + Zinc Sulfate
Type Capsule
Therapeutic Class
Manufacturer Comed Chemicals Pvt Ltd
Available Country India
Last Updated: September 19, 2023 at 7:00 am
Elgrape
Elgrape

Uses

Prophylaxis of megaloblastic anaemia in pregnancy, Supplement for women of child-bearing potential, Folate-deficient megaloblastic anaemia, Prophylaxis of neural tube defect in pregnancy

Xanthophylls are taken for nutritional supplementation, and also for treating dietary shortage or imbalance.

Lycopene is an ingredient found in a variety of supplements and vitamins.

Effective for:

  • Vitamin A deficiency. Taking vitamin A by mouth is effective for preventing and treating symptoms of vitamin A deficiency. Vitamin A deficiency can occur in people with protein deficiency, diabetes, over-active thyroid, fever, liver disease, cystic fibrosis, or an inherited disorder called abetalipoproteinemia.

Possibly Effective for:

  • Breast cancer. Premenopausal women with a family history of breast cancer who consume high levels of vitamin A in their diet seem to have reduced risk of developing breast cancer. It is not known if taking vitamin A supplements has the same benefit.
  • Cataracts. Research suggests that high intake of vitamin A in the diet is linked to a lower risk of developing cataracts.
  • Diarrhea related to HIV. Taking vitamin A along with conventional medicines seems to decrease the risk of death from diarrhea in HIV-positive children with vitamin A deficiency.
  • Malaria. Taking vitamin A by mouth seems to decrease malaria symptoms in children less than 3 years-old living in areas where malaria is common.
  • Measles. Taking vitamin A by mouth seems to reduce the risk of measles complications or death in children with measles and vitamin A deficiency.
  • Precancerous lesions in the mouth (oral leukoplakia). Research suggests that taking vitamin A can help treat precancerous lesions in the mouth.
  • Recovery from laser eye surgery (photoreactive keratectomy). Taking vitamin A by mouth along with vitamin E seems to improve healing after laser eye surgery.
  • Complications after pregnancy. Taking vitamin A seems to reduce the risk of diarrhea and fever after pregnancy in malnourished women.
  • Complications during pregnancy. Taking vitamin A by mouth seems to reduce the risk of death and night blindness during pregnancy in malnourished women.
  • Eye disease affecting the retina (retinitis pigmentosa). Research suggests that taking vitamin A can slow the progression of an eye disease that causes damage to the retina.

Zinc sulfate is a drug used to replenish low levels of zinc or prevent zinc deficiency, or to test for zinc deficiency.

This medication is a mineral used to treat or prevent low levels of zinc alone and together with oral rehydration therapy (ORT). It is also used as a topical astringent. Zinc Sulfate Injection, USP is indicated for use as a supplement to intravenous solutions given for TPN.

Elgrape is also used to associated treatment for these conditions: Anaemia folate deficiency, Folate deficiency, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Latent Iron Deficiency, Neural Tube Defects (NTDs), Vitamin Deficiency, Methotrexate toxicity, Nutritional supplementationFolate supplementation therapy, Mineral supplementation, Nutritional supplementation, Vitamin supplementationNutritional supplementationDeficiency, Vitamin A, Deficiency, Vitamin D, Degenerative Retinal Disorders, Disorder of the Epithelium, Disorder of the Mesoderm, Inner ear disorder, Vitamin Deficiency, Vitamin E Deficiency, Nutritional supplementationDry Eyes, Local itching, Localized pain, Localized swelling, Nutritional supplementation

How Elgrape works

Folic acid, as it is biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by dihydrofolate reductase (DHFR). These folic acid congeners are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids, methylate tRNA, and generate and use formate. Using vitamin B12 as a cofactor, folic acid can normalize high homocysteine levels by remethylation of homocysteine to methionine via methionine synthetase.

Xanthophylls have antioxidant activity and react with active oxygen species, producing biologically active degradation products. They also can inhibit peroxidation of membrane phospholipids and reduce lipofuscin formation, both of which contribute to their antioxidant properties. Lutein is naturally present in the macula of the human retina. It filters out potentially phototoxic blue light and near-ultraviolet radiation from the macula. The protective effect is due in part, to the reactive oxygen species quenching ability of these carotenoids. Lutein is more stable to decomposition by pro-oxidants than are other carotenoids such as beta-carotene and lycopene. Lutein is abundant in the region surrounding the fovea, and lutein is the predominant pigment at the outermost periphery of the macula. Zeaxanthin, which is fully conjugated (lutein is not), may offer somewhat better protection than lutein against phototoxic damage caused by blue and near-ultraviolet light radiation. Lutein is one of only two carotenoids that have been identified in the human lens, may be protective against age-related increases in lens density and cataract formation. Again, the possible protection afforded by lutein may be accounted for, in part, by its reactive oxygen species scavenging abilities. Carotenoids also provide protection from cancer. One of the mechanisms of this is by increasing the expression of the protein connexin-43, thereby stimulating gap junctional communication and preventing unrestrained cell proliferation.

Vision:Vitamin A (all-trans retinol) is converted in the retina to the 11-cis-isomer of retinaldehyde or 11-cis-retinal. 11-cis-retinal functions in the retina in the transduction of light into the neural signals necessary for vision. 11-cis-retinal, while attached to opsin in rhodopsin is isomerized to all-trans-retinal by light. This is the event that triggers the nerve impulse to the brain which allows for the perception of light. All-trans-retinal is then released from opsin and reduced to all-trans-retinol. All-trans-retinol is isomerized to 11-cis-retinol in the dark, and then oxidized to 11-cis-retinal. 11-cis-retinal recombines with opsin to re-form rhodopsin. Night blindness or defective vision at low illumination results from a failure to re-synthesize 11-cis retinal rapidly.
Epithelial differentiation: The role of Vitamin A in epithelial differentiation, as well as in other physiological processes, involves the binding of Vitamin A to two families of nuclear retinoid receptors (retinoic acid receptors, RARs; and retinoid-X receptors, RXRs). These receptors function as ligand-activated transcription factors that modulate gene transcription. When there is not enough Vitamin A to bind these receptors, natural cell differentiation and growth are interrupted.

Zinc inhibits cAMP-induced, chloride-dependent fluid secretion by inhibiting basolateral potassium (K) channels, in in-vitro studies with rat ileum. This study has also shown the specificity of Zn to cAMP-activated K channels, because zinc did not block the calcium (Ca)-mediated K channels. As this study was not performed in Zn-deficient animals, it provides evidence that Zn is probably effective in the absence of Zn deficiency. Zinc also improves the absorption of water and electrolytes, improves regeneration of the intestinal epithelium, increases the levels of brush border enzymes, and enhances the immune response, allowing for a better clearance of the pathogens.

Dosage

Elgrape dosage

Supplement for women of child-bearing potential: 0.4 mg daily.

Folate-deficient megaloblastic anaemia: 5 mg daily for 4 mth, up to 15 mg daily in malabsorption states. Continued dosing at 5 mg every 1-7 days may be needed in chronic haemolytic states, depending on the diet and rate of haemolysis.

Prophylaxis of neural tube defect in pregnancy: 4 or 5 mg daily starting before pregnancy and continued through the 1st trimester.

Prophylaxis of megaloblastic anaemia in pregnancy: 0.2-0.5 mg daily.

Vitamin A deficiency For severe deficiency with corneal changes: 500,000 unit/day for 3 days, followed by 50,000 unit/day for 2 wk and then 10,000-20,000 unit/day for 2 mth as follow-up therapy.

For cases without corneal changes: 10,000-25,000 unit/day until clinical improvement occurs (usually 1 -2 wk).

May be taken with or without food.

Side Effects

GI disturbances, hypersensitivity reactions; bronchospasm.

Hypervitaminosis A characterised by fatigue, irritability, anorexia, weight loss, vomiting and other Gl disturbances, low-grade fever, hepatosplenomegaly, skin changes, alopoecia, dry hair, cracking and bleeding lips, SC swelling, nocturia, pains in bones and joints.

Toxicity

IPR-MUS LD50 85 mg/kg,IVN-GPG LD50 120 mg/kg, IVN-MUS LD50 239 mg/kg, IVN-RAT LD50 500 mg/kg, IVN-RBT LD50 410 mg/kg

Acute toxicity to vitamin A can occur when adults or children ingest >100x or >20x the RDA, respectively, over a period of hours or a few days. The RDA for vitamin A differs depending on age and sex and can range from 300 - 900 μg retinol activity equivalents (RAE) per day. Symptoms of acute systemic toxicity generally include mucocutaneous involvement (e.g. xerosis, cheilitis, skin peeling) and may involve mental status changes. Children are typically more susceptible to acute vitamin A toxicity - daily intakes of as little as 1500 IU/kg have been observed to result in toxicity.

Chronic vitamin A toxicity can develop following the long-term ingestion of high vitamin A doses. While there is a wide variation in the lowest toxic vitamin A dose, the ingestion of >25 000 IU daily for 6 years or 100,000 IU daily for 6 months is considered to be toxic. Chronic vitamin A toxicity can affect many organ systems and can lead to the development of osteoporosis and CNS effects (e.g. headaches).

Human : TDLo ( Oral) 45mg/kg/7D-C : Normocytic anemia, pulse rate increase without fall inBP Human: TDLo (oral) 106mg/kg : Hypermotylity, diarrhea Mouse ; LD50 Oral : 245mg/kg Mouse : LD50 : subcutaneous : 781mg/kg

Precaution

Treatment resistance may occur in patients with depressed haematopoiesis, alcoholism, deficiencies of other vitamins. Neonates.

Cholestatic jaundice; fat-malabsorption conditions. Monitor patients closely for toxicity. Liver impairment and children.

Interaction

Antiepileptics, oral contraceptives, anti-TB drugs, alcohol, aminopterin, methotrexate, pyrimethamine, trimethoprim and sulphonamides may result to decrease in serum folate contrations. Decreases serum phenytoin concentrations.

Decreased absorption with neomycin. Increased risk of hypervitaminosis A with synthetic retinoids eg, acitretin, isotretinoin and tretinoin. Increased risk of toxicity when used with alcohol.

Volume of Distribution

Tetrahydrofolic acid derivatives are distributed to all body tissues but are stored primarily in the liver.

After absorption zinc is bound to protein metallothionein in the intestines. Zinc is widely distributed throughout the body. It is primarily stored in RBCs, WBCs, muscles, bones, Skin, Kidneys, Liver, Pancreas, retina, and prostate.

Elimination Route

Folic acid is absorbed rapidly from the small intestine, primarily from the proximal portion. Naturally occurring conjugated folates are reduced enzymatically to folic acid in the gastrointestinal tract prior to absorption. Folic acid appears in the plasma approximately 15 to 30 minutes after an oral dose; peak levels are generally reached within 1 hour.

Readily absorbed from the normal gastrointestinal tract

Approximately 20 to 30% of dietary zinc is absorbed, primarily from the duodenum and ileum. The amount absorbed is dependent on the bioavailability from food. Zinc is the most bioavailable from red meat and oysters. Phytates may impair absorption by chelation and formation of insoluble complexes at an alkaline pH. After absorption, zinc is bound in the intestine to the protein metallothionein. Endogenous zinc can be reabsorbed in the ileum and colon, creating an enteropancreatic circulation of zinc.

Half Life

1.9 hours

3 hours

Elimination Route

After a single oral dose of 100 mcg of folic acid in a limited number of normal adults, only a trace amount of the drug appeared in the urine. An oral dose of 5 mg in 1 study and a dose of 40 mcg/kg of body weight in another study resulted in approximately 50% of the dose appearing in the urine. After a single oral dose of 15 mg, up to 90% of the dose was recovered in the urine. A majority of the metabolic products appeared in the urine after 6 hours; excretion was generally complete within 24 hours. Small amounts of orally administered folic acid have also been recovered in the feces. Folic acid is also excreted in the milk of lactating mothers.

Primarily fecal (approximately 90%); to a lesser extent in the urine and in perspiration.

Pregnancy & Breastfeeding use

Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).

Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).

Contraindication

Undiagnosed megaloblastic anaemia; pernicious, aplastic or normocytic anaemias.

Hypervitaminosis A; pregnancy (dose exceeding RDA).

Storage Condition

Store at 15-30° C.

Innovators Monograph

You find simplified version here Elgrape


*** Taking medicines without doctor's advice can cause long-term problems.
Share