Frispas D Uses, Dosage, Side Effects and more
Diclofenac Eye Drops contains Diclofenac Sodium, a potent non-steroidal anti-inflammatory drug with analgesic property. Diclofenac Sodium produces anti-inflammatory effect by inhibiting cyclooxygenase activity with a reduction in the tissue prostaglandin ( such as PgE2 and Pg F2α) .
Diclofenac reduces inflammation and by extension reduces nociceptive pain and combats fever. It also increases the risk of developing a gastrointestinal ulcer by inhibiting the production of protective mucus in the stomach.
Dicycloverine HCl relieves smooth muscle spasm in the GI and urinary tract. This effect is partly due to antimuscarinic action and partly direct action on the smooth muscle.
Dicyclomine is an anticholinergic drug used to relax the smooth muscles of the intestines. It's duration of action is not especially long as it is usually taken 4 times daily with individual doses of 20-40mg orally or 10-20mg by intramuscular injection. Dicyclomine should not be administered intravenously.
Trade Name | Frispas D |
Generic | Diclofenac + Dicyclomine |
Type | Injection |
Therapeutic Class | |
Manufacturer | Invision Medi Sciences Pvt Ltd |
Available Country | India |
Last Updated: | January 7, 2025 at 1:49 am |
Uses
Diclofenac Sodium ophthalmic preparation is used for-
- Inhibition of miosis during cataract surgery.
- Post-operative inflammation after cataract surgery and other ocular surgical procedures.
- Pre-operative and post-operative prevention of cystoid macular edema (CME) associated with lens extraction & intraocular lens implantation.
- Post-traumatic inflammation in penetrating and non- penetrating wounds (as an adjuvant to local anti-infective therapy).
- Non-infected chronic conjunctivitis, keratoconjunctivitis.
Dicycloverine is used for:
- Functional bowel/ irritable bowel syndrome
- Urinary incontinence secondary to unstable detrusor muscle
- Infantile colic
- GIT spasm
- Colicky abdominal pain
- Diverticulitis
- Abdominal colic
Frispas D is also used to associated treatment for these conditions: Actinic Keratosis (AK), Acute Arthritis, Acute Gouty Arthritis, Acute Migraine, Acute Musculoskeletal Pain, Ankylosing Spondylitis (AS), Common Cold, Fever, Gouty Arthritis, Inflammation, Inflammatory Disease of the Oral Cavity, Inflammatory Disease of the throat, Inflammatory Reaction of the Nerve, Joint Pain, Juvenile Idiopathic Arthritis (JIA), Menstrual Distress (Dysmenorrhea), Muscle Inflammation, Ocular Inflammation, Operation site inflammation, Osteoarthritis (OA), Osteoarthritis of the Knee, Pain, Pain, Nerve, Pericarditis, Photophobia, Postoperative pain, Primary Dysmenorrhoea, Radicular Pain, Rheumatic Pain, Rheumatism, Rheumatoid Arthritis, Seasonal Allergic Conjunctivitis, Soreness, Muscle, Spinal pain, Tendon pain, Vertebral column pain, Acute Musculoskeletal injury, Acute, moderate, severe Pain, Inflammatory, Localized soft tissue rheumatism, Mild to moderate joint pain, Mild to moderate pain, Minor pain, Perioperative miosisFunctional bowel syndrome, Irritable Bowel Syndrome (IBS), Gastrointestinal cramps caused by Gas
How Frispas D works
Diclofenac inhibits cyclooxygenase-1 and -2, the enzymes responsible for production of prostaglandin (PG) G2 which is the precursor to other PGs. These molecules have broad activity in pain and inflammation and the inhibition of their production is the common mechanism linking each effect of diclofenac.
PGE2 is the primary PG involved in modulation of nociception. It mediates peripheral sensitization through a variety of effects. PGE2 activates the Gq-coupled EP1 receptor leading to increased activity of the inositol trisphosphate/phospholipase C pathway. Activation of this pathway releases intracellular stores of calcium which directly reduces action potential threshold and activates protein kinase C (PKC) which contributes to several indirect mechanisms. PGE2 also activates the EP4 receptor, coupled to Gs, which activates the adenylyl cyclase/protein kinase A (AC/PKA) signaling pathway. PKA and PKC both contribute to the potentiation of transient receptor potential cation channel subfamily V member 1 (TRPV1) potentiation, which increases sensitivity to heat stimuli. They also activate tetrodotoxin-resistant sodium channels and inhibit inward potassium currents. PKA further contributes to the activation of the P2X3 purine receptor and sensitization of T-type calcium channels. The activation and sensitization of depolarizing ion channels and inhibition of inward potassium currents serve to reduce the intensity of stimulus necessary to generate action potentials in nociceptive sensory afferents. PGE2 act via EP3 to increase sensitivity to bradykinin and via EP2 to further increase heat sensitivity. Central sensitization occurs in the dorsal horn of the spinal cord and is mediated by the EP2 receptor which couples to Gs. Pre-synaptically, this receptor increases the release of pro-nociceptive neurotransmitters glutamate, CGRP, and substance P. Post-synaptically it increases the activity of AMPA and NMDA receptors and produces inhibition of inhibitory glycinergic neurons. Together these lead to a reduced threshold of activating, allowing low intensity stimuli to generate pain signals. PGI2 is known to play a role via its Gs-coupled IP receptor although the magnitude of its contribution varies. It has been proposed to be of greater importance in painful inflammatory conditions such as arthritis. By limiting sensitization, both peripheral and central, via these pathways NSAIDs can effectively reduce inflammatory pain.
PGI2 and PGE2 contribute to acute inflammation via their IP and EP2 receptors. Similarly to β adrenergic receptors these are Gs-coupled and mediate vasodilation through the AC/PKA pathway. PGE2 also contributes by increasing leukocyte adhesion to the endothelium and attracts the cells to the site of injury. PGD2 plays a role in the activation of endothelial cell release of cytokines through its DP1 receptor. PGI2 and PGE2 modulate T-helper cell activation and differentiation through IP, EP2, and EP4 receptors which is believed to be an important activity in the pathology of arthritic conditions. By limiting the production of these PGs at the site of injury, NSAIDs can reduce inflammation.
PGE2 can cross the blood-brain barrier and act on excitatory Gq EP3 receptors on thermoregulatory neurons in the hypothalamus. This activation triggers an increase in heat-generation and a reduction in heat-loss to produce a fever. NSAIDs prevent the generation of PGE2 thereby reducing the activity of these neurons.
Dicyclomine achieves its action partially through direct antimuscarinic activity of the M1, M3, and M2 receptors; and partially through antagonism of bradykinin and histamine. Dicyclomine non-competitively inhibits the action of bradykinin and histamine, resulting in direct action on the smooth muscle, and decreased strength of contractions seen in spasms of the ileum.
Dosage
Frispas D dosage
Ophthalmic (Adult)-
- Postoperative ocular inflammation: Instill into the appropriate eye 4 times daily starting 24 hr after surgery for up to 28 days.
- Inflammation and discomfort after strabismus surgery: Instill 1 drop 4 times daily for the 1st wk; then tid in the 2nd wk, bid in the 3rd wk, and as required for the 4th wk.
- Pain and discomfort after radial keratotomy: Instill 1 drop before surgery followed by 1 drop immediately after surgery, and then 1 drop 4 times daily for up to 2 days.
- Pain after accidental trauma: Instill 1 drop 4 times daily for up to 2 days.
- Control of inflammation after argon laser trabeculoplasty:Instill 1 drop 4 times during the 2 hr before procedure followed by 1 drop 4 times daily, up to 7 days after procedure.
- Prophylaxis of intra-operative miosis: Instill into appropriate eye 4 times w/in 2 hr before surgery.
- Post-photorefractive keratectomy pain:Instill into the affected eye twice, an hr before surgery, then 1 drop twice at 5-min intervals immediately after surgery, then every 2-5 hr while awake for up to 24 hr.
- Seasonal allergic conjunctivitis:Instill 1 drop before surgery followed by 1 drop immediately after surgery, and then 1 drop 4 times daily for up to 2 days.
Oral dosage forms-
- Adults:10 to 20 mg three times a day.
- Children >6 months of age: 5 to 10 mg three times a day.
- Children <6 months of age: Dose must be determined by the doctor.
Oral dicycloverine Hydrochloride should be started as soon as possible
Intramuscular dosage form
- Adults:Intramuscular injection. Not for intravenous use. The recommended intramuscular dose is 80 mg daily (in 4 equally divided doses).
Intramuscular dosage form should not be used for periods longer than 1 or 2 days.
Side Effects
Mild to moderate burning sensation in 5-15% patients which is transient in nature and almost never necessitated discontinuation of treatment. Other less common side-effects are sensitivity to light, bad taste, feeling of pressure, allergic reactions etc.
Insomnia, mydriasis, cycloplegia, increased ocular tension, urinary hesitancy, palpitations, dyspnea.
Toxicity
Symptoms of overdose include lethargy, drowsiness, nausea, vomiting, and epigastric pain, and gastrointestinal bleeding. Hypertension, acute renal failure, respiratory depression and coma occur rarely. In case of overdose, provide supportive care and consider inducing emesis and administering activated charcoal if overdose occurred less than 4 hours prior.
Patients experiencing an overdose may present with headache, nausea, vomiting, blurred vision, dilated pupils, dizziness, dry mouth, difficulty swallowing, CNS stimulation, as well as hot, dry skin. Treat patients with gastric lavage, emetics, activated charcoal, sedatives for excitement, and a cholinergic agent if indicated.
The oral LD50 in mice is 625mg/kg.
Precaution
Diclofenac eye drops may mask the signs of infection. So physicians should be alert to the development of infections in patients receiving the drug. During prolonged use, it is recommended that physicians conduct periodic examinations of the eye, including measurement of the intraocular pressure. Contact lenses should not be worn during treatment.
Use with caution in patients with autonomic neuropathy, hepatic or renal disease, ulcerative colitis, coronary heart disease, congestive heart failure, cardiac tachyarrhythmia, known or suspected prostatic hypertrophy.
Interaction
No drug interaction is reported. There should be at least 5 minutes interval when another ophthalmic solution (e.g., steroid) is given.
The following agents may increase certain actions or side-effects of Dicycloverine-antiarrhythmic agents, antihistamines, antipsychotic agents, benzodiazepines, MAO inhibitors, narcotic analgesics, nitrates and nitrites, sympathomimetic agents, tricyclic antidepressants and other drugs having anticholinergic activity.
Volume of Distribution
Diclofenac has a total volume of distribution of 5-10 L or 0.1-0.2 L/kg. The volume of the central compartment is 0.04 L/kg. Diclofenac distributes to the synovial fluid reaching peak concentration 2-4h after administration. There is limited crossing of the blood brain barrier and cerebrospinal fluid concentrations only reach 8.22% of plasma concentrations. Doses of 50 mg delivered via intramuscular injection produced no detectable diclofenac concentrations in breast milk, however metabolite concentrations were not investigated. Diclofenac has been shown to cross the placenta in mice and rats but human data is unavailable.
The volume of distribution for a 20mg oral dose is 3.65L/kg.
Elimination Route
Diclofenac is completely absorbed from the GI tract but likely undergoes significant first pass metabolism with only 60% of the drug reaching systemic circulation unchanged . Many topical formulations are absorbed percutaneous and produce clinically significant plasma concentrations. Absorption is dose proportional over the range of 25-150 mg. Tmax varies between formulations with the oral solution reaching peak plasma concentrations in 10-40min, the enteric coated tablet in 1.5-2h, and the sustained- and extended-release formulations prolonging Tmax even further. Administration with food has no significant effects on AUC but does delay Tmax to 2.5-12h.
The bioavailability of dicyclomine has not been determined, though it is likely well absorbed as the primary route of elimination is in the urine. Dicyclomine has a Tmax of 1-1.5h.
Half Life
The terminal half-life of diclofenac is approximately 2 h, however the apparent half-life including all metabolites is 25.8-33 h.
The mean plasma elimination half life is approximately 1.8 hours.
Clearance
Diclofenac has a plasma clearance 16 L/h.
Data regarding the clearance of dicyclomine is not readily available.
Elimination Route
Diclofenac is mainly eliminated via metabolism. Of the total dose, 60-70% is eliminated in the urine and 30% is eliminated in the feces. No significant enterohepatic recycling occurs.
Dicyclomine is 79.5% eliminated in the urine and 8.4% in the feces.
Pregnancy & Breastfeeding use
The safety of Diclofenac eye drops in pregnancy & lactation has not been established and its use therefore is not recommended unless the potential benefit to the mother outweighs the possible risk to the child.
Pregnancy: Category B. Dicycloverine was neither teratogenic nor embryocidal in animal trial. It, like other drugs should be used during pregnancy only if clearly needed. There are no data on the secretion of this drug into breast milk. Dicycloverine should be used cautiously in case of lactating mother.
Contraindication
Hypersensitivity to any of the components Like other non steroidal anti-inflammatory agents, Diclofenac Sodium eye drops is contraindicated in patients in whom attacks of asthma, urticaria or acute rhinitis have been observed following application of acetyl salicylic acid or other cyclo-oxygenase inhibitors
Dicycloverine is contraindicated in:
- Obstructive uropathy
- Obstructive disease of the gastrointestinal tract
- Severe ulcerative colitis
- Reflux esophagitis
- Unstable cardiovascular status in acute hemorrhage
- Glaucoma
- Myasthenia gravis
- Evidence of prior hypersensitivity to dicycloverine hydrochloride or other ingredients of this formulation
- Infants less than 6 months of age
Acute Overdose
Accidental ingestion of Diclofenac Sodium presents virtually no risk of unwanted effects, since one 5 ml bottle of eye drop solution contains only 5 mg of Diclofenac Sodium, which is equivalent to about 3% of the recommended maximum oral dose for adults.
Toxic reaction seldom occurs with dicycloverine. The signs and symptoms of overdosage are headache; nausea; vomiting; blurred vision; dilated pupils; hot, dry skin; dizziness; dryness of the mouth; difficulty in swallowing; and CNS stimulation.
Storage Condition
Close the bottle immediately after use. Do not use for more than four weeks after opening. Store at room temperature.
Store below 30°C.