Haem Up Gems

Haem Up Gems Uses, Dosage, Side Effects, Food Interaction and all others data.

Cupric sulfate is a salt created by treating cupric oxide with sulfuric acid. This forms as large, bright blue crystals containing five molecules of water (CuSO4∙5H2O) and is also known as blue vitriol. The anhydrous salt is created by heating the hydrate to 150 °C (300 °F). Cupric sulfate is used primarily for agricultural purposes, as a pesticide, germicide, feed additive, and soil additive. Some of its secondary uses are as a raw material in the preparation of other copper compounds, as a reagent in analytic chemistry, as an electrolyte for batteries and electroplating baths, and in medical practice as a locally applied fungicide, bactericide, and astringent .

Copper is an essential trace element and an important catalyst for heme synthesis and iron absorption. After zinc and iron, copper is the third most abundant trace element found in the human body. Copper is a noble metal and its properties include high thermal and electrical conductivity, low corrosion, alloying ability, and malleability. Copper is a component of intrauterine contraceptive devices (IUD) and the release of copper is necessary for their important contraceptive effects. The average daily intake of copper in the USA is approximately 1 mg Cu with the diet being a primary source .

Interestingly, the dysregulation of copper has been studied with a focus on neurodegenerative diseases, such as Wilson’s disease, Alzheimer’s disease, and Parkinson’s disease. Data from clinical observations of the neurotoxic effects of copper may provide the basis for future treatments affecting copper and its homeostasis .

Ferrous fumarate is an iron preparation that is used in the prevention and treatment of iron deficiency. The amount of elemental iron is 330 mg/g of ferrous fumarate.

The major activity of supplemental iron is in the prevention and treatment of iron deficiency anemia. Iron has putative immune-enhancing, anticarcinogenic and cognition-enhancing activities.

Magnesium is the second most plentiful cation of the intracellular fluids. It is essential for the activity of many enzyme systems and plays an important role with regard to neurochemical transmission and muscular excitability. Deficits are accompanied by a variety of structural and functional disturbances.

Magnesium sulfate is a small colorless crystal used as an anticonvulsant, a cathartic, and an electrolyte replenisher in the treatment of pre-eclampsia and eclampsia. It causes direct inhibition of action potentials in myometrial muscle cells. Excitation and contraction are uncoupled, which decreases the frequency and force of contractions. Magnesium sulfate is gaining popularity as an initial treatment in the management of various dysrhythmias, particularly torsades de pointes, and dyrhythmias secondary to TCA overdose or digitalis toxicity.

Trade Name Haem Up Gems
Generic Ferrous Fumarate + Magnesium Sulfate + Vitamin B9 / Folic Acid / Folate + Cupric Sulfate
Weight 200mg
Type Capsule
Therapeutic Class
Manufacturer Zydus Cadila Healthcare Ltd
Available Country India
Last Updated: September 19, 2023 at 7:00 am
Haem Up Gems
Haem Up Gems

Uses

Cupric sulfate is a compound used as an intravenous copper supplement for Total Parenteral Nutrition (TPN).

Elemental use in copper deficiency

Copper and copper containing compounds are broadly used in medical practice. Metallic copper is used already for many years in dental fillings and in copper intrauterine devices (IUD) for reversible contraception. Ointments containing copper, which release copper ions that are absorbed by the skin in the management of cramps, disturbances of renal function, peripheral, venous hypostatic circulatory disturbances, rheumatic disease and swelling associated with trauma. There are also cosmetic facial creams containing copper as their main active ingredient .

Ferrous Fumarate is used to prevent or treat iron deficiency anaemia. The prevention of iron deficiency during pregnancy usually requires a combination of iron and folic acid. Iron is usually found in foods and is necessary for the normal development of red blood cells. A lack of iron affects the development of the red blood cells and causes a reduction in the number of red blood cells found in the body (iron deficiency anaemia).

Magnesium sulfate injection is used for the following conditions:

Convulsions (treatment) - Intravenous Magnesium sulfate injection is used for immediate control of life-threatening convulsions in the treatment of severe toxemias (pre-eclampsia and eclampsia) of pregnancy and in the treatment of acute nephritis in children.

Hypomagnesemia (prophylaxis and treatment) - Magnesium sulfate injection is used for replacement therapy in magnesium deficiency, especially in acute hypomagnesemia accompanied by signs of tetany similar to those of hypocalcemia.

Magnesium sulfate injection is also used to prevent or treat magnesium deficiency in patients receiving total parenteral nutrition.

Tetany, uterine (treatment) - Magnesium sulfate injection is used for uterine tetany as a myometrial relaxant.

Haem Up Gems is also used to associated treatment for these conditions: Copper Deficiency, Skin disinfectionFolic acid antagonist overdose, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Oral ContraceptivesConstipation, Convulsions, Hypomagnesemia, Torsades de Pointes, Barium poisoning, Severe Exacerbation of asthma, Bowel preparation therapy, Soaking aid for minor sprains and bruises

How Haem Up Gems works

This drug is an essential trace element for the functioning of many metalloenzymes including ceruloplasmin, ferroxidase II, lysyl oxidase, monoamine oxidase, Zn-copper superoxide dismutase, tyrosinase, dopamine-β-hydroxylase, and cytochrome-c-oxidase.

It is involved in erythropoiesis & leukopoiesis, bone mineralization, elastin and collagen cross-linking, oxidative phosphorylation, catecholamine metabolism, melanin formation & antioxidant protection of cells .

Cupric sulfate may also have a role in iron turnover, ascorbic acid metabolism, phospholipid metabolism, myelin formation, glucose homeostasis, and cellular immune defense .

After the metal passes through the basolateral membrane it is transported to the liver, attached to serum albumin. The liver is the critical organ for the homeostasis of copper. The copper is then prepared for excretion through the bile or incorporation into various proteins. The transport of copper to the peripheral tissues is accomplished through the plasma attached to serum albumin, ceruloplasmin or low-molecular-weight complexes .

In the dermis, copper promotes dermal fibroblasts proliferation, upregulates collagen (types I, II, and V) and elastin fiber components (elastin, fibrillins) production by fibroblasts, through the induction of TGF-β, promotes heat shock protein-47, important for collagen fibril formation, serves as a cofactor of LOX enzyme required for extracellular matrix protein cross-linking, stabilizes the skin ECM once formed, as increased crosslinking of collagen and elastin matrices occurs in a copper dose dependant manner, serves as a cofactor of superoxide dismutase, an antioxidant enzyme in the skin, essential for protection against free radicals, inhibits cellular oxidative effects such as membrane damage and lipid peroxidation, acts as a cofactor of tyrosinase, a melanin biosynthesis essential enzyme responsible for skin and hair pigmentation .

In reference to its role as a biocide, copper is an essential nutrient for many organisms. It acts as a cofactor in respiration, and therefore copper is required for aerobic metabolism. Accumulation of copper ions or intracellular release of free copper ions from proteins lead to cell damage. Copper catalyzes reactions that result in the production of hydroxyl radicals through the Fenton and Haber-Weiss reactions. The highly reactive oxygen intermediates lead to lipid peroxidation and oxidation of proteins. Free copper ions oxidize sulfhydryl groups, such as cysteine, in proteins or the cellular redox buffer glutathione. In particular, copper ions inactivate proteins by damaging Fe-S clusters in cytoplasmic hydratases .

Iron is necessary for the production of hemoglobin. Iron-deficiency can lead to decreased production of hemoglobin and a microcytic, hypochromic anemia.

Magnesium is the second most plentiful cation of the intracellular fluids. It is essential for the activity of many enzyme systems and plays an important role with regard to neurochemical transmission and muscular excitability. Magnesium sulfate reduces striated muscle contractions and blocks peripheral neuromuscular transmission by reducing acetylcholine release at the myoneural junction. Additionally, Magnesium inhibits Ca2+ influx through dihydropyridine-sensitive, voltage-dependent channels. This accounts for much of its relaxant action on vascular smooth muscle.

Dosage

Haem Up Gems dosage

Iron-deficiency anemia:

  • Adult: Usual dose range: Up to 600 mg daily. May increase up to 1.2 g daily if necessary.
  • Child:Preterm neonate: 0.6-2.4 ml / kg daily; up to 6 yr: 2.5-5 ml bid.

Should be taken on an empty stomach. Best taken on an empty stomach. May be taken with meals to reduce GI discomfort.

Intramuscular:Adults and older children: For severe hypomagnesemia, 1 to 5 g (2 to 10 mLof 50% solution) daily in divided doses; administration is repeated daily until serum levels have returned to normal. If deficiency is not severe, 1 g (2 mL of 50% solution) can be given once or twice daily. Serum magnesium levels should serve as a guide to continued dosage.

Intravenous:1 to 4 g magnesium sulfate (magnesium sulfate (magnesium sulfate injection) injection) may be given intravenously in 10% to 20% solution, but only with great caution; the rate should not exceed 1.5 mL of 10% solution or equivalent per minute until relaxation is obtained.

Intravenous Infusion:4 g in 250 mL of 5% Dextrose Injection at a rate not exceeding 3 mL per minute.

Usual Dose Range:1 to 40 g daily.

Electrolyte Replenisher:Intramuscular 1 to 2 g in 50% solution four times a day until serum magnesium is within normal limits.

Usual Pediatric Dose:Intramuscular 20 to 40 mg per kg of body weight in a 20% solution repeated as necessary.

For Eclampsia:Initially 1 to 2 g in 25% or 50% solution is given intramuscularly. Subsequently, 1 g is given every 30 minutes until relief is obtained. The blood pressure should be monitored after each injection.

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.

Side Effects

Like all medicines, Ferrous Fumarate Tablets can sometimes cause side effects, although not everybody gets them. They might be:

  • Heartburn
  • Feeling sick or being sick
  • Diarrhoea or constipation.

Also, you might find your stools are darker in color after you have taken this medicine. This is quite commonly seen with all iron preparations and is normal.

Flushing, sweating, sharply lowered blood pressure, hypothermia, stupor and ultimately, respiratory depression.

Toxicity

Acute oral toxicity (LD50): 300 mg/kg in rats .

Copper sulfate ingestion (accidental or deliberate) is a rare form of poisoning usually limited to the Indian subcontinent. Though the rates are on the decline, it is essential that physicians are aware of its lethal complications and management strategies. The main complications of copper sulfate ingestion include intravascular hemolysis, methemoglobinaemia, acute kidney injury, and rhabdomyolysis .

Severe gastrointestinal effects may occur with acute overdosage. In extreme or long-term overdosage, symptoms may be similar to those of Wilson's disease, a disease in which the liver does not filter copper adequately and copper accumulates in the liver, brain, eyes, and other organs. Gradually, high copper levels may cause life-threatening organ damage .

Ingestion of more than 15 mg of copper has been reported to be toxic to humans. In a survey of human clinical case studies, 5.3 mg/day was the lowest oral dose at which local gastrointestinal irritation was seen. Ingestion of gram quantities of copper sulfate resulted in death by suicide, whereas less severe effects were reported from estimated copper doses of 40 to 50 mg from ingestion of carbonated beverages in contact with copper containers. Limited data are available on the chronic toxicity of copper. The hazard from dietary intakes of up to 5 mg/day appears to be low .

Treatment of cupric sulfate toxicity is symptomatic and may involve the use of a chelating agent (e.g. penicillamine, trientine and zinc) to remove any excessive metal that has been absorbed. In addition, dialysis may be useful .

Acute iron overdosage can be divided into four stages. In the first stage, which occurs up to six hours after ingestion, the principal symptoms are vomiting and diarrhea. Other symptoms include hypotension, tachycardia and CNS depression ranging from lethargy to coma. The second phase may occur at 6-24 hours after ingestion and is characterized by a temporary remission. In the third phase, gastrointestinal symptoms recur accompanied by shock, metabolic acidosis, coma, hepatic necrosis and jaundice, hypoglycemia, renal failure and pulmonary edema. The fourth phase may occur several weeks after ingestion and is characterized by gastrointestinal obstruction and liver damage. In a young child, 75 milligrams per kilogram is considered extremely dangerous. A dose of 30 milligrams per kilogram can lead to symptoms of toxicity. Estimates of a lethal dosage range from 180 milligrams per kilogram and upwards. A peak serum iron concentration of five micrograms or more per ml is associated with moderate to severe poisoning in many.

LD50 = 1200 mg/kg (rat, subcutaneous). May be harmful if swallowed. May act as an irritant. Adverse reactions include hypotension, ECG changes, diarrhea, urinary retention, CNS depression and respiratory depression.

Precaution

Patients with intestinal strictures and diverticular disease. May worsen diarrhoea in patients with inflammatory bowel disease. May cause constipation and faecal impaction in elderly. Avoid prolonged admin (>6 mth) except in patients with continued bleeding, menorrhagia or repeated pregnancies. Not for routine use in treatment of haemolytic anaemia unless an iron-deficient state exists. Parenteral iron should not be used concurrently with oral iron treatment. Avoid use in patients receiving repeated blood tranfusions. Pregnancy.

Renal impairment, myasthaenia gravis, digitalised patients; pregnancy. Monitor serum-magnesium concentrations.

Interaction

Oral absorption of iron may be increased when taken with ascorbic acid. May reduce the absorption of quinolones and tetracyclines when taken concurrently via the oral route. Concurrent admin with antacids may reduce the absorption of ferrous fumarate from the GI tract. May reduce the absorption of penicillamine in the gut when taken concurrently.

Volume of Distribution

The body of a 70 kg healthy individual contains approximately 110 mg of copper, 50% of which is found in the bones and muscles, 15% in the skin, 15% in the bone marrow, 10% in the hepatic system, and 8% in the brain .

The distribution of copper is affected by sex, age, and the amount of copper in the diet. Brain and liver have the highest tissue levels (about one-third of the total body burden), with lesser concentrations found in the heart, spleen, kidneys, and blood. The iris and choroid of the eye have very high copper levels .

Erythrocyte copper levels are generally stable, however, plasma levels fluctuate widely in association with the synthesis and release of ceruloplasmin. Plasma copper levels during gestation may be 2-3 times levels measured before pregnancy, due to the increased synthesis of ceruloplasmin .

Elimination Route

Primarily absorbed in the small intestine .

Based on studies with radioactive isotopes of copper, most copper is absorbed from the stomach and duodenum of the gastrointestinal tract.

Maximum blood copper levels are observed within 1 to 3 hours following oral administration, and about 50 percent of ingested copper was absorbed. Copper absorption is proposed to occur by two mechanisms, one energy- dependent and the other enzymatic. Factors that can interfere with copper absorption include competition for binding sites with zinc, interactions with molybdenum and sulfates, chelation with phytates, and inhibition by ascorbic acid (vitamin C) .

Copper absorbed from the gastrointestinal tract is transported rapidly to blood serum and deposited in the liver bound to metallothionein .

From 20 to 60% of the dietary copper is absorbed .

The efficiency of absorption depends on the salt form, the amount administered, the dosing regimen and the size of iron stores. Subjects with normal iron stores absorb 10% to 35% of an iron dose. Those who are iron deficient may absorb up to 95% of an iron dose.

Half Life

The biological half-life of copper from the diet is 13-33 days with biliary excretion being the primary route of elimination .

43.2 hours (for newborns)

Elimination Route

This drug is 80% eliminated via the liver in bile. Minimal excretion by the kidney . Metabolism studies show that persons with daily intakes of 2-5 mg of copper per day absorbed 0.6 to 1.6 mg (32%), excreted 0.5 to 1.3 mg in the bile, passed 0.1 to 0.3 mg directly into the bowel, and excreted 0.01 to 0.06 mg in the urine. As the data indicate, urinary excretion plays a negligible role in copper clearance, and the main route of excretion is in the bile. Other nonsignificant excretory routes include saliva, sweat, menstrual flow, and excretion into the intestine from the blood .

Magnesium is excreted solely by the kidney at a rate proportional to the serum concentration and glomerular filtration.

Pregnancy & Breastfeeding use

Pregnancy Category- Not Classified. FDA has not yet classified the drug into a specified pregnancy category

Pregnancy category B. Either animal-reproduction studies have not demonstrated a foetal risk but there are no controlled studies in pregnant women or animal-reproduction studies have shown an adverse effect (other than a decrease in fertility) that was not confirmed in controlled studies in women in the 1st trimester (and there is no evidence of a risk in later trimesters).

Contraindication

Patients with a known hypersensitivity to any of the ingredients. Hemochroma

Heart block, severe renal impairment, myocardial damage.

Acute Overdose

Symptoms: Nausea, vomiting, abdominal pain, diarrhoea, haematemesis and rectal bleeding. Hypotension, coma and hepatocellular necrosis may occur later.

Treatment: Empty stomach contents by gastric lavage within 1 hr of ingestion. In severe toxicity, IV desferrioxamine may be given. Whole bowel irrigation may also be considered in severe poisoning.

Symptoms of hypermagnesaemia are: respiratory depression and loss of deep tendon reflexes due to neuromuscular blockade; nausea, vomiting, flushing, thirst, hypotension, drowsiness, confusion, slurred speech, double vision, bradycardia and muscle weakness.

Treatment in adults should include IV administration of 5-10 mEq of 10% calcium gluconate. Artificial respiration may be required.

Innovators Monograph

You find simplified version here Haem Up Gems


*** Taking medicines without doctor's advice can cause long-term problems.
Share