Hemaviton Glucare

Hemaviton Glucare Uses, Dosage, Side Effects, Food Interaction and all others data.

Trivalent chromium is part of glucose tolerance factor, an essential activator of insulin-mediated reactions. Chromium helps to maintain normal glucose metabolism and peripheral nerve function. Chromium increases insulin binding to cells, increases insulin receptor density and activates insulin receptor kinase leading to enhanced insulin sensitivity . In chromium deficiency, intravenous administration of chromium resulted in normalization of the glucose tolerance curve from the diabetic-like curve typical of chromium deficiency .

Lutein is an xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll (an excited form of chlorophyll), which is overproduced at very high light levels, during photosynthesis.

Lutein was found to be present in a concentrated area of the macula, a small area of the retina responsible for central vision. The hypothesis for the natural concentration is that lutein helps protect from oxidative stress and high-energy light. Several studies show that an increase in macula pigmentation decreases the risk for eye diseases such as Age-related Macular Degeneration (AMD).

Vitamin E Capsule is a Vitamin E preparation. Vitamin E acts as an antioxidant in the body. Vitamin E protects polyunsaturated fatty acids (which are components of cellular membrane) and other oxygen-sensitive substances such as vitamin A & vitamin C from oxidation. Vitamin E reacts with free radicals, which is the cause of oxidative damage to cell membranes, without the formation of another free radical in the process. The main pharmacological action of vitamin E in humans is its antioxidant effect.

In premature neonates irritability, edema, thrombosis and hemolytic anemia may be caused due to vitamin E deficiency. Creatinuria, ceroid deposition, muscle weakness, decreased erythrocyte survival or increased in vitro hemolysis by oxidizing agents have been identified in adults and children with low serum tocopherol concentrations.

Vitamin E is a collective term used to describe 8 separate fat soluble antioxidants, most commonly alpha-tocopherol. Vitamin E acts to protect cells against the effects of free radicals, which are potentially damaging by-products of the body's metabolism. Vitamin E deficiency is seen in persons with abetalipoproteinemia, premature, very low birth weight infants (birth weights less than 1500 grams, or 3½ pounds), cystic fibrosis, and cholestasis and severe liver disease. Preliminary research suggests vitamin E may help prevent or delay coronary heart disease and protect against the damaging effects of free radicals, which may contribute to the development of chronic diseases such as cancer. It also protects other fat-soluble vitamins (A and B group vitamins) from destruction by oxygen. Low levels of vitamin E have been linked to increased incidence of breast and colon cancer.

A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with anemia, short stature, hypogonadism, impaired wound healing, and geophagia. It is identified by the symbol Zn .

A newer study suggests implies that an imbalance of zinc is associated with the neuronal damage associated with traumatic brain injury, stroke, and seizures .

Understanding the mechanisms that control brain zinc homeostasis is, therefore, imperative to the development of preventive and treatment regimens for these and other neurological disorders .

Trade Name Hemaviton Glucare
Generic Chromium Nicotinate + Zinc + Vitamin E + + Vitamin B + Vitamin B + Vitamin B + Lutein
Weight 200mcg, 10mg, 100iu, 150mg, 6100mg, 12100mcg, 5mg
Type Caplet
Therapeutic Class
Manufacturer Tempo Scan Pacific
Available Country Indonesia
Last Updated: September 19, 2023 at 7:00 am
Hemaviton Glucare
Hemaviton Glucare

Uses

Chromium nicotinate is a medication used to treat chromium deficiencies and associated symptoms and also in total parenteral nutrition.

Indicated for use as a supplement to intravenous solutions given for total parenteral nutrition (TPN), to maintain chromium serum levels and to prevent depletion of endogenous stores and subsequent deficiency symptoms .

Xanthophylls are taken for nutritional supplementation, and also for treating dietary shortage or imbalance.

As a dietary supplement:

  • Vitamin E deficiency resulting from impaired absorption.
  • Increased requirements due to diet rich in polyunsaturated fats.
  • For healthy hair & skin
  • As an Antioxidant
  • Hemolytic anemia due to Vitamin E deficiency

Therapeutic use

: Heavy metal poisoning, Hepatotoxin poisoning, Hemolytic anemia, Oxygen therapy and replacement therapy in nutritional deficiency states for the betterment of skin and hair.

Zinc is an essential element commonly used for the treatment of patients with documented zinc deficiency.

Zinc can be used for the treatment and prevention of zinc deficiency/its consequences, including stunted growth and acute diarrhea in children, and slowed wound healing. It is also utilized for boosting the immune system, treating the common cold and recurrent ear infections, as well as preventing lower respiratory tract infections .

Hemaviton Glucare is also used to associated treatment for these conditions: Folate supplementation therapy, Mineral supplementation, Nutritional supplementation, Vitamin supplementationVitamin Deficiency, Long-chain omega-3 fatty acid supplementation, Dietary supplementationCandidiasis, Common Cold, Diaper Dermatitis, Diaper Rash, Eye redness, Iron Deficiency (ID), Ocular Irritation, Skin Irritation, Sunburn, Wilson's Disease, Zinc Deficiency, Dietary and Nutritional Therapies, Dietary supplementation

How Hemaviton Glucare works

Chromium is an essential nutrient involved in the metabolism of glucose, insulin and blood lipids. Its role in potentiating insulin signalling cascades has been implicated in several studies. Chromium upregulates insulin-stimulated insulin signal transduction via affecting effector molecules downstream of the insulin receptor (IR). IR-mediated signalling pathway involves phoshorylation of multiple intracellular domains and protein kinases, and downstream effector molecules . Upon activation by ligands, intracellular β-subunit of IR autophosphorylates and activates tyrosine kinase domain of the IR, followed by activation and phosphorylation of regulatory proteins and downstream signalling effectors including phosphatidylinositol 2-kinase (PI3K). PI3K activates further downstream reaction cascades to activate protein kinase B (Akt) to ultimately promote translocation of glucose transporter-4 (Glut4)-vesicles from the cytoplasm to the cell surface and regulate glucose uptake . Chromium enhances the kinase activity of insulin receptor β and increases the activity of downstream effectors, pI3-kinase and Akt.

Under insulin-resistant conditions, chromium also promotes GLUT-4 transporter translocation that is independent of activity of IR, IRS-1, PI3-kinase, or Akt; chromium mediates cholesterol efflux from the membranes via increasing fluidity of the membrane by decreasing the membrane cholesterol and upregulation of sterol regulatory element-binding protein . As a result, intracellular GLUT-4 transporters are stimulated to translocate from intracellular to the plasma membrane, leading to enhanced glucose uptake in muscle cells . Chromium attenuates the activity of PTP-1B in vitro, which is a negative regulator of insulin signaling. It also alleviates ER stress that is observed to be elevated the suppression of insulin signaling. ER stress is thought to activate c-Jun N-terminal kinase (JNK), which subsequently induces serine phosphorylation of IRS and aberration of insulin signalling . Transient upregulation of AMPK by chromium also leads to increased glucose uptake .

Xanthophylls have antioxidant activity and react with active oxygen species, producing biologically active degradation products. They also can inhibit peroxidation of membrane phospholipids and reduce lipofuscin formation, both of which contribute to their antioxidant properties. Lutein is naturally present in the macula of the human retina. It filters out potentially phototoxic blue light and near-ultraviolet radiation from the macula. The protective effect is due in part, to the reactive oxygen species quenching ability of these carotenoids. Lutein is more stable to decomposition by pro-oxidants than are other carotenoids such as beta-carotene and lycopene. Lutein is abundant in the region surrounding the fovea, and lutein is the predominant pigment at the outermost periphery of the macula. Zeaxanthin, which is fully conjugated (lutein is not), may offer somewhat better protection than lutein against phototoxic damage caused by blue and near-ultraviolet light radiation. Lutein is one of only two carotenoids that have been identified in the human lens, may be protective against age-related increases in lens density and cataract formation. Again, the possible protection afforded by lutein may be accounted for, in part, by its reactive oxygen species scavenging abilities. Carotenoids also provide protection from cancer. One of the mechanisms of this is by increasing the expression of the protein connexin-43, thereby stimulating gap junctional communication and preventing unrestrained cell proliferation.

The mechanism of action for most of vitamin E's effects are still unknown. Vitamin E is an antioxidant, preventing free radical reactions with cell membranes. Though in some cases vitamin E has been shown to have pro-oxidant activity.

One mechanism of vitamin E's antioxidant effect is in the termination of lipid peroxidation. Vitamin E reacts with unstable lipid radicals, producing stable lipids and a relatively stable vitamin E radical. The vitamin E radical is then reduced back to stable vitamin E by reaction with ascorbate or glutathione.

Zinc has three primary biological roles: catalytic, structural, and regulatory. The catalytic and structural role of zinc is well established, and there are various noteworthy reviews on these functions. For example, zinc is a structural constituent in numerous proteins, inclusive of growth factors, cytokines, receptors, enzymes, and transcription factors for different cellular signaling pathways. It is implicated in numerous cellular processes as a cofactor for approximately 3000 human proteins including enzymes, nuclear factors, and hormones .

Zinc promotes resistance to epithelial apoptosis through cell protection (cytoprotection) against reactive oxygen species and bacterial toxins, likely through the antioxidant activity of the cysteine-rich metallothioneins .

In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF pathway, decreases NF-kappaB activation, leading to decreased gene expression and generation of tumor necrosis factor-alpha (TNF-alpha), IL-1beta, and IL-8 .

There are several mechanisms of action of zinc on acute diarrhea. Various mechanisms are specific to the gastrointestinal system: zinc restores mucosal barrier integrity and enterocyte brush-border enzyme activity, it promotes the production of antibodies and circulating lymphocytes against intestinal pathogens, and has a direct effect on ion channels, acting as a potassium channel blocker of adenosine 3-5-cyclic monophosphate-mediated chlorine secretion. Cochrane researchers examined the evidence available up to 30 September 2016 .

Zinc deficiency in humans decreases the activity of serum thymulin (a hormone of the thymus), which is necessary for the maturation of T-helper cells. T-helper 1 (Th(1)) cytokines are decreased but T-helper 2 (Th(2)) cytokines are not affected by zinc deficiency in humans [A342417].

The change of Th(1) to Th(2) function leads to cell-mediated immune dysfunction. Because IL-2 production (Th(1) cytokine) is decreased, this causes decreased activity of natural-killer-cell (NK cell) and T cytolytic cells, normally involved in killing viruses, bacteria, and malignant cells [A3424].

In humans, zinc deficiency may lead to the generation of new CD4+ T cells, produced in the thymus. In cell culture studies (HUT-78, a Th(0) human malignant lymphoblastoid cell line), as a result of zinc deficiency, nuclear factor-kappaB (NF-kappaB) activation, phosphorylation of IkappaB, and binding of NF-kappaB to DNA are decreased and this results in decreased Th(1) cytokine production .

In another study, zinc supplementation in human subjects suppressed the gene expression and production of pro-inflammatory cytokines and decreased oxidative stress markers [A3424]. In HL-60 cells (a human pro-myelocytic leukemia cell line), zinc deficiency increased the levels of TNF-alpha, IL-1beta, and IL-8 cytokines and mRNA. In such cells, zinc was found to induce A20, a zinc finger protein that inhibited NF-kappaB activation by the tumor necrosis factor receptor-associated factor pathway. This process decreased gene expression of pro-inflammatory cytokines and oxidative stress markers .

The exact mechanism of zinc in acne treatment is poorly understood. However, zinc is considered to act directly on microbial inflammatory equilibrium and facilitate antibiotic absorption when used in combination with other agents. Topical zinc alone as well as in combination with other agents may be efficacious because of its anti-inflammatory activity and ability to reduce P. acnes bacteria by the inhibition of P. acnes lipases and free fatty acid levels .

Dosage

Hemaviton Glucare dosage

Betterment of Cardiovascular health: 400 mg - 800 mg / day

Deficiency syndrome in adults: 200 mg - 400 mg / day

Deficiency syndrome in children: 200 mg / day

Thalassemia: 800 mg / day

Sickle-cell anemia: 400 mg / day

Betterment of Skin & Hair: 200 mg - 400 mg / day (Topical use is also established for beautification)

Chronic cold in adults: 200 mg / day

Side Effects

Overdoses (>1g) have been associated with minor side effects, including hypertension, fatigue, diarrhea and myopathy

Toxicity

Oral LD50 for Cr (VI) is 135 - 175 mg/kg in mouse and 46 - 113 mg/kg in rat . Oral LD50 for Cr (III) in rat is >2000 mg/kg . LD50 of chromium (III) oxide in rats is reported to be > 5g/kg . Other LD50 values reported for rats include: 3.5 g/kg (CI 3.19-3.79 g/kg) for chromium sulphate; 11.3 g/kg for chromium (III) acetate; 3.3 g/kg for chromium nitrate; and 1.5 g/kg for chromium nitrate nonahydrate .

Acute overdose of chromium is rare and seriously detrimental effects of hexavalent chromium are primarily the result of chronic low-level exposure . In case of overdose with minimal toxicity following acute ingestion, treatment should be symptomatic and supportive . There is no known antidote for chromium toxicity.

Hexavalent chromium is a Class A carcinogen by the inhalation route of exposure and Class D by the oral route . The oral lethal dose in humans has been estimated to be 1-3 g of Cr (VI); oral toxicity most likely involves gastrointestinal bleeding rather than systemic toxicity . Chronic exposure may cause damage to the following organs: kidneys, lungs, liver, upper respiratory tract . Soluble chromium VI compounds are human carcinogens. Hexavalent chromium compounds were mutagenic in bacteria assays and caused chromosome aberrations in mammalian cells. There have been associations of increased frequencies of chromosome aberrations in lymphocytes from chromate production workers . In human cells in vitro, Cr (VI) caused chromosomal aberrations, sister chromatid exchanges and oxidative DNA damage .

There is no data available for effects in pregnancy, breast feeding, hepatic impairment, or renal impairment. However, it appears that the process of vitamin E elimination is strict and self regulating enough that vitamin E toxicity is exceedingly rare. Studies showing adverse effects from excess vitamin E generally involve people consuming more than 1000mg/day for weeks to months.

According to the Toxnet database of the U.S. National Library of Medicine, the oral LD50 for zinc is close to 3 g/kg body weight, more than 10-fold higher than cadmium and 50-fold higher than mercury .

The LD50 values of several zinc compounds (ranging from 186 to 623 mg zinc/kg/day) have been measured in rats and mice .

Precaution

Vitamin E may enhance the anticoagulant activity of anticoagulant drugs. Caution is advised in premature infants with high dose Vitamin E supplementation, because of reported risk of necrotizing enterocilitis.

Interaction

Vitamin E may impair the absorption of Vitamin A. Vitamin K functions impairement happens at the level of prothrombin formation and potentiates the effect of Warfarin.

Volume of Distribution

Absorbed chromium is distributed to all tissues of the body and its distribution in the body depends on the species, age, and chemical form . Circulating Cr (III) following oral or parenteral administration of different compounds can be taken up by tissues and accumulates in the liver, kidney, spleen, soft tissue, and bone .

0.41L/kg in premature neonates given a 20mg/kg intramuscular injection.

A pharmacokinetic study was done in rats to determine the distribution and other metabolic indexes of zinc in two particle sizes. It was found that zinc particles were mainly distributed to organs including the liver, lung, and kidney within 72 hours without any significant difference being found according to particle size or rat gender .

Elimination Route

Chromium compounds are both absorbed by the lung and the gastrointestinal tract. Oral absorption of chromium compounds in humans can range between 0.5% and 10%, with the hexavalent (VI) chromium more easily absorbed than the trivalent (III) form . Absorption of chromium from the intestinal tract is low, ranging from less than 0.4% to 2.5% of the amount consumed . Vitamin C and the vitamin B niacin is reported to enhance chromium absorption .

Most hexavalent Cr (VI) undergoes partial intragastric reduction to Cr (III) upon absorption, which is an action mainly mediated by sulfhydryl groups of amino acids . Cr (VI) readily penetrates cell membranes and chromium can be found in both erythrocytes and plasma after gastrointestinal absorption of Cr (IV). In comparison, the presence of chromium is limited to the plasma as Cr (III) displays poor cell membrane penetration . Once transported through the cell membrane, Cr (VI) is rapidly reduced to Cr (III), which subsequently binds to macromolecules or conjugate with proteins. Cr (III) may be bound to transferrin or other plasma proteins, or as complexes, such as glucose tolerance factor (GTF).

10-33% of deuterium labelled vitamin E is absorbed in the small intestine. Absorption of Vitamin E is dependant upon absorption of the fat in which it is dissolved. For patients with poor fat absorption, a water soluble form of vitamin E may need to be substituted such as tocopheryl polyethylene glycol-1000 succinate.

In other studies the oral bioavailability of alpha-tocopherol was 36%, gamma-tocotrienol was 9%. The time to maximum concentration was 9.7 hours for alpha-tocopherol and 2.4 hours for gamma-tocotrienol.

Zinc is absorbed in the small intestine by a carrier-mediated mechanism . Under regular physiologic conditions, transport processes of uptake do not saturate. The exact amount of zinc absorbed is difficult to determine because zinc is secreted into the gut. Zinc administered in aqueous solutions to fasting subjects is absorbed quite efficiently (at a rate of 60-70%), however, absorption from solid diets is less efficient and varies greatly, dependent on zinc content and diet composition .

Generally, 33% is considered to be the average zinc absorption in humans . More recent studies have determined different absorption rates for various populations based on their type of diet and phytate to zinc molar ratio. Zinc absorption is concentration dependent and increases linearly with dietary zinc up to a maximum rate [L20902].

Additionally zinc status may influence zinc absorption. Zinc-deprived humans absorb this element with increased efficiency, whereas humans on a high-zinc diet show a reduced efficiency of absorption .

Half Life

The elimination half-life of hexavalent chromium is 15 to 41 hours .

44 hours in premature neonates given a 20mg/kg intramuscular injection. 12 minutes in intravenous injection of intestinal lymph.

The half-life of zinc in humans is approximately 280 days .

Clearance

Excretion of chromium is via the kidneys ranges from 3 to 50 μg/day . The 24-hour urinary excretion rates for normal human subjects are reported to be 0.22 μg/day .

6.5mL/hr/kg in premature neonates given a 20mg/kg intramuscular injection.

In one study of healthy patients, the clearance of zinc was found to be 0.63 ± 0.39 μg/min .

Elimination Route

Absorbed chromium is excreted mainly in the urine, accounting for 80% of total excretion of chromium; small amounts are lost in hair, perspiration and bile . Chromium is excreted primarily in the urine by glomerular filtration or bound to a low molecular-weight organic transporter .

Alpha tocopherol is excreted in urine as well as bile in the feces mainly as a carboxyethyl-hydrochroman (CEHC) metabolite, but it can be excreted in it's natural form .

The excretion of zinc through gastrointestinal tract accounts for approximately one-half of all zinc eliminated from the body .

Considerable amounts of zinc are secreted through both biliary and intestinal secretions, however most is reabsorbed. This is an important process in the regulation of zinc balance. Other routes of zinc excretion include both urine and surface losses (sloughed skin, hair, sweat) .

Zinc has been shown to induce intestinal metallothionein, which combines zinc and copper in the intestine and prevents their serosal surface transfer. Intestinal cells are sloughed with approximately a 6-day turnover, and the metallothionein-bound copper and zinc are lost in the stool and are thus not absorbed .

Measurements in humans of endogenous intestinal zinc have primarily been made as fecal excretion; this suggests that the amounts excreted are responsive to zinc intake, absorbed zinc and physiologic need .

In one study, elimination kinetics in rats showed that a small amount of ZnO nanoparticles was excreted via the urine, however, most of the nanoparticles were excreted via the feces .

Pregnancy & Breastfeeding use

Use in pregnancy: Vitamin E may be used in pregnancy in the normally recommended dose but the safety of high dose therapy has not been established.

Use in lactation: There appears to be no contraindication to breast feeding by mothers taking the normally recommended dose.

Contraindication

No known contraindications found.

Special Warning

Use in Children: Vitamin E is safe for children

Acute Overdose

Large doses of vitamin E (more than 1 gm/day) have been reported to increase bleeding tendency in vitamin K deficient patients such as those taking oral anticoagulants.

Storage Condition

Store at a cool and dry place, Protect from light and moisture.

Innovators Monograph

You find simplified version here Hemaviton Glucare


*** Taking medicines without doctor's advice can cause long-term problems.
Share