Hufabion

Hufabion Uses, Dosage, Side Effects, Food Interaction and all others data.

Cupric sulfate is a salt created by treating cupric oxide with sulfuric acid. This forms as large, bright blue crystals containing five molecules of water (CuSO4∙5H2O) and is also known as blue vitriol. The anhydrous salt is created by heating the hydrate to 150 °C (300 °F). Cupric sulfate is used primarily for agricultural purposes, as a pesticide, germicide, feed additive, and soil additive. Some of its secondary uses are as a raw material in the preparation of other copper compounds, as a reagent in analytic chemistry, as an electrolyte for batteries and electroplating baths, and in medical practice as a locally applied fungicide, bactericide, and astringent .

Copper is an essential trace element and an important catalyst for heme synthesis and iron absorption. After zinc and iron, copper is the third most abundant trace element found in the human body. Copper is a noble metal and its properties include high thermal and electrical conductivity, low corrosion, alloying ability, and malleability. Copper is a component of intrauterine contraceptive devices (IUD) and the release of copper is necessary for their important contraceptive effects. The average daily intake of copper in the USA is approximately 1 mg Cu with the diet being a primary source .

Interestingly, the dysregulation of copper has been studied with a focus on neurodegenerative diseases, such as Wilson’s disease, Alzheimer’s disease, and Parkinson’s disease. Data from clinical observations of the neurotoxic effects of copper may provide the basis for future treatments affecting copper and its homeostasis .

Ferrous fumarate is an iron preparation that is used in the prevention and treatment of iron deficiency. The amount of elemental iron is 330 mg/g of ferrous fumarate.

The major activity of supplemental iron is in the prevention and treatment of iron deficiency anemia. Iron has putative immune-enhancing, anticarcinogenic and cognition-enhancing activities.

Folic acid is essential for the production of certain coenzymes in many metabolic systems such as purine and pyrimidine synthesis. It is also essential in the synthesis and maintenance of nucleoprotein in erythropoesis. It also promotes WBC and platelet production in folate-deficiency anaemia.

Folic acid is a water-soluble B-complex vitamin found in foods such as liver, kidney, yeast, and leafy, green vegetables. Also known as folate or Vitamin B9, folic acid is an essential cofactor for enzymes involved in DNA and RNA synthesis. More specifically, folic acid is required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. Folic acid is the precursor of tetrahydrofolic acid, which is involved as a cofactor for transformylation reactions in the biosynthesis of purines and thymidylates of nucleic acids. Impairment of thymidylate synthesis in patients with folic acid deficiency is thought to account for the defective deoxyribonucleic acid (DNA) synthesis that leads to megaloblast formation and megaloblastic and macrocytic anemias. Folic acid is particularly important during phases of rapid cell division, such as infancy, pregnancy, and erythropoiesis, and plays a protective factor in the development of cancer. As humans are unable to synthesize folic acid endogenously, diet and supplementation is necessary to prevent deficiencies. In order to function properly within the body, folic acid must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted by anti-metabolite therapies such as Methotrexate as they function as DHFR inhibitors to prevent DNA synthesis in rapidly dividing cells, and therefore prevent the formation of DHF and THF.

In general, folate serum levels below 5 ng/mL indicate folate deficiency, and levels below 2 ng/mL usually result in megaloblastic anemia.

Trade Name Hufabion
Generic Ferrous Fumarate + manganese Sulfate + cupric Sulfate + vitamin C + folic Acid + vitamin B
Weight 250mg, 0, 2mg, 0, 2mg, 50mg, 1mg, 1210mcg
Type Capsule
Therapeutic Class
Manufacturer Gratia Husada Farma
Available Country Indonesia
Last Updated: September 19, 2023 at 7:00 am
Hufabion
Hufabion

Uses

Cupric sulfate is a compound used as an intravenous copper supplement for Total Parenteral Nutrition (TPN).

Elemental use in copper deficiency

Copper and copper containing compounds are broadly used in medical practice. Metallic copper is used already for many years in dental fillings and in copper intrauterine devices (IUD) for reversible contraception. Ointments containing copper, which release copper ions that are absorbed by the skin in the management of cramps, disturbances of renal function, peripheral, venous hypostatic circulatory disturbances, rheumatic disease and swelling associated with trauma. There are also cosmetic facial creams containing copper as their main active ingredient .

Ferrous Fumarate is used to prevent or treat iron deficiency anaemia. The prevention of iron deficiency during pregnancy usually requires a combination of iron and folic acid. Iron is usually found in foods and is necessary for the normal development of red blood cells. A lack of iron affects the development of the red blood cells and causes a reduction in the number of red blood cells found in the body (iron deficiency anaemia).

Prophylaxis of megaloblastic anaemia in pregnancy, Supplement for women of child-bearing potential, Folate-deficient megaloblastic anaemia, Prophylaxis of neural tube defect in pregnancy

Hufabion is also used to associated treatment for these conditions: Copper Deficiency, Skin disinfectionFolic acid antagonist overdose, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Oral ContraceptivesAnaemia folate deficiency, Folate deficiency, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Latent Iron Deficiency, Neural Tube Defects (NTDs), Vitamin Deficiency, Methotrexate toxicity, Nutritional supplementation

How Hufabion works

This drug is an essential trace element for the functioning of many metalloenzymes including ceruloplasmin, ferroxidase II, lysyl oxidase, monoamine oxidase, Zn-copper superoxide dismutase, tyrosinase, dopamine-β-hydroxylase, and cytochrome-c-oxidase.

It is involved in erythropoiesis & leukopoiesis, bone mineralization, elastin and collagen cross-linking, oxidative phosphorylation, catecholamine metabolism, melanin formation & antioxidant protection of cells .

Cupric sulfate may also have a role in iron turnover, ascorbic acid metabolism, phospholipid metabolism, myelin formation, glucose homeostasis, and cellular immune defense .

After the metal passes through the basolateral membrane it is transported to the liver, attached to serum albumin. The liver is the critical organ for the homeostasis of copper. The copper is then prepared for excretion through the bile or incorporation into various proteins. The transport of copper to the peripheral tissues is accomplished through the plasma attached to serum albumin, ceruloplasmin or low-molecular-weight complexes .

In the dermis, copper promotes dermal fibroblasts proliferation, upregulates collagen (types I, II, and V) and elastin fiber components (elastin, fibrillins) production by fibroblasts, through the induction of TGF-β, promotes heat shock protein-47, important for collagen fibril formation, serves as a cofactor of LOX enzyme required for extracellular matrix protein cross-linking, stabilizes the skin ECM once formed, as increased crosslinking of collagen and elastin matrices occurs in a copper dose dependant manner, serves as a cofactor of superoxide dismutase, an antioxidant enzyme in the skin, essential for protection against free radicals, inhibits cellular oxidative effects such as membrane damage and lipid peroxidation, acts as a cofactor of tyrosinase, a melanin biosynthesis essential enzyme responsible for skin and hair pigmentation .

In reference to its role as a biocide, copper is an essential nutrient for many organisms. It acts as a cofactor in respiration, and therefore copper is required for aerobic metabolism. Accumulation of copper ions or intracellular release of free copper ions from proteins lead to cell damage. Copper catalyzes reactions that result in the production of hydroxyl radicals through the Fenton and Haber-Weiss reactions. The highly reactive oxygen intermediates lead to lipid peroxidation and oxidation of proteins. Free copper ions oxidize sulfhydryl groups, such as cysteine, in proteins or the cellular redox buffer glutathione. In particular, copper ions inactivate proteins by damaging Fe-S clusters in cytoplasmic hydratases .

Iron is necessary for the production of hemoglobin. Iron-deficiency can lead to decreased production of hemoglobin and a microcytic, hypochromic anemia.

Folic acid, as it is biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by dihydrofolate reductase (DHFR). These folic acid congeners are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids, methylate tRNA, and generate and use formate. Using vitamin B12 as a cofactor, folic acid can normalize high homocysteine levels by remethylation of homocysteine to methionine via methionine synthetase.

Dosage

Hufabion dosage

Iron-deficiency anemia:

  • Adult: Usual dose range: Up to 600 mg daily. May increase up to 1.2 g daily if necessary.
  • Child:Preterm neonate: 0.6-2.4 ml / kg daily; up to 6 yr: 2.5-5 ml bid.

Should be taken on an empty stomach. Best taken on an empty stomach. May be taken with meals to reduce GI discomfort.

Supplement for women of child-bearing potential: 0.4 mg daily.

Folate-deficient megaloblastic anaemia: 5 mg daily for 4 mth, up to 15 mg daily in malabsorption states. Continued dosing at 5 mg every 1-7 days may be needed in chronic haemolytic states, depending on the diet and rate of haemolysis.

Prophylaxis of neural tube defect in pregnancy: 4 or 5 mg daily starting before pregnancy and continued through the 1st trimester.

Prophylaxis of megaloblastic anaemia in pregnancy: 0.2-0.5 mg daily.

May be taken with or without food.

Side Effects

Like all medicines, Ferrous Fumarate Tablets can sometimes cause side effects, although not everybody gets them. They might be:

  • Heartburn
  • Feeling sick or being sick
  • Diarrhoea or constipation.

Also, you might find your stools are darker in color after you have taken this medicine. This is quite commonly seen with all iron preparations and is normal.

GI disturbances, hypersensitivity reactions; bronchospasm.

Toxicity

Acute oral toxicity (LD50): 300 mg/kg in rats .

Copper sulfate ingestion (accidental or deliberate) is a rare form of poisoning usually limited to the Indian subcontinent. Though the rates are on the decline, it is essential that physicians are aware of its lethal complications and management strategies. The main complications of copper sulfate ingestion include intravascular hemolysis, methemoglobinaemia, acute kidney injury, and rhabdomyolysis .

Severe gastrointestinal effects may occur with acute overdosage. In extreme or long-term overdosage, symptoms may be similar to those of Wilson's disease, a disease in which the liver does not filter copper adequately and copper accumulates in the liver, brain, eyes, and other organs. Gradually, high copper levels may cause life-threatening organ damage .

Ingestion of more than 15 mg of copper has been reported to be toxic to humans. In a survey of human clinical case studies, 5.3 mg/day was the lowest oral dose at which local gastrointestinal irritation was seen. Ingestion of gram quantities of copper sulfate resulted in death by suicide, whereas less severe effects were reported from estimated copper doses of 40 to 50 mg from ingestion of carbonated beverages in contact with copper containers. Limited data are available on the chronic toxicity of copper. The hazard from dietary intakes of up to 5 mg/day appears to be low .

Treatment of cupric sulfate toxicity is symptomatic and may involve the use of a chelating agent (e.g. penicillamine, trientine and zinc) to remove any excessive metal that has been absorbed. In addition, dialysis may be useful .

Acute iron overdosage can be divided into four stages. In the first stage, which occurs up to six hours after ingestion, the principal symptoms are vomiting and diarrhea. Other symptoms include hypotension, tachycardia and CNS depression ranging from lethargy to coma. The second phase may occur at 6-24 hours after ingestion and is characterized by a temporary remission. In the third phase, gastrointestinal symptoms recur accompanied by shock, metabolic acidosis, coma, hepatic necrosis and jaundice, hypoglycemia, renal failure and pulmonary edema. The fourth phase may occur several weeks after ingestion and is characterized by gastrointestinal obstruction and liver damage. In a young child, 75 milligrams per kilogram is considered extremely dangerous. A dose of 30 milligrams per kilogram can lead to symptoms of toxicity. Estimates of a lethal dosage range from 180 milligrams per kilogram and upwards. A peak serum iron concentration of five micrograms or more per ml is associated with moderate to severe poisoning in many.

IPR-MUS LD50 85 mg/kg,IVN-GPG LD50 120 mg/kg, IVN-MUS LD50 239 mg/kg, IVN-RAT LD50 500 mg/kg, IVN-RBT LD50 410 mg/kg

Precaution

Patients with intestinal strictures and diverticular disease. May worsen diarrhoea in patients with inflammatory bowel disease. May cause constipation and faecal impaction in elderly. Avoid prolonged admin (>6 mth) except in patients with continued bleeding, menorrhagia or repeated pregnancies. Not for routine use in treatment of haemolytic anaemia unless an iron-deficient state exists. Parenteral iron should not be used concurrently with oral iron treatment. Avoid use in patients receiving repeated blood tranfusions. Pregnancy.

Treatment resistance may occur in patients with depressed haematopoiesis, alcoholism, deficiencies of other vitamins. Neonates.

Interaction

Oral absorption of iron may be increased when taken with ascorbic acid. May reduce the absorption of quinolones and tetracyclines when taken concurrently via the oral route. Concurrent admin with antacids may reduce the absorption of ferrous fumarate from the GI tract. May reduce the absorption of penicillamine in the gut when taken concurrently.

Antiepileptics, oral contraceptives, anti-TB drugs, alcohol, aminopterin, methotrexate, pyrimethamine, trimethoprim and sulphonamides may result to decrease in serum folate contrations. Decreases serum phenytoin concentrations.

Volume of Distribution

The body of a 70 kg healthy individual contains approximately 110 mg of copper, 50% of which is found in the bones and muscles, 15% in the skin, 15% in the bone marrow, 10% in the hepatic system, and 8% in the brain .

The distribution of copper is affected by sex, age, and the amount of copper in the diet. Brain and liver have the highest tissue levels (about one-third of the total body burden), with lesser concentrations found in the heart, spleen, kidneys, and blood. The iris and choroid of the eye have very high copper levels .

Erythrocyte copper levels are generally stable, however, plasma levels fluctuate widely in association with the synthesis and release of ceruloplasmin. Plasma copper levels during gestation may be 2-3 times levels measured before pregnancy, due to the increased synthesis of ceruloplasmin .

Tetrahydrofolic acid derivatives are distributed to all body tissues but are stored primarily in the liver.

Elimination Route

Primarily absorbed in the small intestine .

Based on studies with radioactive isotopes of copper, most copper is absorbed from the stomach and duodenum of the gastrointestinal tract.

Maximum blood copper levels are observed within 1 to 3 hours following oral administration, and about 50 percent of ingested copper was absorbed. Copper absorption is proposed to occur by two mechanisms, one energy- dependent and the other enzymatic. Factors that can interfere with copper absorption include competition for binding sites with zinc, interactions with molybdenum and sulfates, chelation with phytates, and inhibition by ascorbic acid (vitamin C) .

Copper absorbed from the gastrointestinal tract is transported rapidly to blood serum and deposited in the liver bound to metallothionein .

From 20 to 60% of the dietary copper is absorbed .

The efficiency of absorption depends on the salt form, the amount administered, the dosing regimen and the size of iron stores. Subjects with normal iron stores absorb 10% to 35% of an iron dose. Those who are iron deficient may absorb up to 95% of an iron dose.

Folic acid is absorbed rapidly from the small intestine, primarily from the proximal portion. Naturally occurring conjugated folates are reduced enzymatically to folic acid in the gastrointestinal tract prior to absorption. Folic acid appears in the plasma approximately 15 to 30 minutes after an oral dose; peak levels are generally reached within 1 hour.

Half Life

The biological half-life of copper from the diet is 13-33 days with biliary excretion being the primary route of elimination .

Elimination Route

This drug is 80% eliminated via the liver in bile. Minimal excretion by the kidney . Metabolism studies show that persons with daily intakes of 2-5 mg of copper per day absorbed 0.6 to 1.6 mg (32%), excreted 0.5 to 1.3 mg in the bile, passed 0.1 to 0.3 mg directly into the bowel, and excreted 0.01 to 0.06 mg in the urine. As the data indicate, urinary excretion plays a negligible role in copper clearance, and the main route of excretion is in the bile. Other nonsignificant excretory routes include saliva, sweat, menstrual flow, and excretion into the intestine from the blood .

After a single oral dose of 100 mcg of folic acid in a limited number of normal adults, only a trace amount of the drug appeared in the urine. An oral dose of 5 mg in 1 study and a dose of 40 mcg/kg of body weight in another study resulted in approximately 50% of the dose appearing in the urine. After a single oral dose of 15 mg, up to 90% of the dose was recovered in the urine. A majority of the metabolic products appeared in the urine after 6 hours; excretion was generally complete within 24 hours. Small amounts of orally administered folic acid have also been recovered in the feces. Folic acid is also excreted in the milk of lactating mothers.

Pregnancy & Breastfeeding use

Pregnancy Category- Not Classified. FDA has not yet classified the drug into a specified pregnancy category

Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).

Contraindication

Patients with a known hypersensitivity to any of the ingredients. Hemochroma

Undiagnosed megaloblastic anaemia; pernicious, aplastic or normocytic anaemias.

Acute Overdose

Symptoms: Nausea, vomiting, abdominal pain, diarrhoea, haematemesis and rectal bleeding. Hypotension, coma and hepatocellular necrosis may occur later.

Treatment: Empty stomach contents by gastric lavage within 1 hr of ingestion. In severe toxicity, IV desferrioxamine may be given. Whole bowel irrigation may also be considered in severe poisoning.

Storage Condition

Store at 15-30° C.

Innovators Monograph

You find simplified version here Hufabion


*** Taking medicines without doctor's advice can cause long-term problems.
Share