Incobal Plus Uses, Dosage, Side Effects and more
Folic acid is essential for the production of certain coenzymes in many metabolic systems such as purine and pyrimidine synthesis. It is also essential in the synthesis and maintenance of nucleoprotein in erythropoesis. It also promotes WBC and platelet production in folate-deficiency anaemia.
Folic acid is a water-soluble B-complex vitamin found in foods such as liver, kidney, yeast, and leafy, green vegetables. Also known as folate or Vitamin B9, folic acid is an essential cofactor for enzymes involved in DNA and RNA synthesis. More specifically, folic acid is required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. Folic acid is the precursor of tetrahydrofolic acid, which is involved as a cofactor for transformylation reactions in the biosynthesis of purines and thymidylates of nucleic acids. Impairment of thymidylate synthesis in patients with folic acid deficiency is thought to account for the defective deoxyribonucleic acid (DNA) synthesis that leads to megaloblast formation and megaloblastic and macrocytic anemias. Folic acid is particularly important during phases of rapid cell division, such as infancy, pregnancy, and erythropoiesis, and plays a protective factor in the development of cancer. As humans are unable to synthesize folic acid endogenously, diet and supplementation is necessary to prevent deficiencies. In order to function properly within the body, folic acid must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted by anti-metabolite therapies such as Methotrexate as they function as DHFR inhibitors to prevent DNA synthesis in rapidly dividing cells, and therefore prevent the formation of DHF and THF.
In general, folate serum levels below 5 ng/mL indicate folate deficiency, and levels below 2 ng/mL usually result in megaloblastic anemia.
Mecobalamin is the neurologically active form of vitamin B12 and occurs as a water-soluble vitamin in the body. It is a cofactor in the enzyme methionine synthase, which functions to transfer methyl groups for the regeneration of methionine from homocysteine. In anaemia, it increases erythrocyte production by promoting nucleic acid synthesis in the bone marrow and by promoting maturation and division of erythrocytes.
Pyridoxine is a water-soluble vitamin which functions in the metabolism of carbohydrates, proteins and fats. It is essential in Hb formation and GABA synthesis within the CNS. It also aids in the release of glycogen stored in the liver and muscles.
Vitamin B6 (pyridoxine) is a water-soluble vitamin used in the prophylaxis and treatment of vitamin B6 deficiency and peripheral neuropathy in those receiving isoniazid (isonicotinic acid hydrazide, INH). Vitamin B6 has been found to lower systolic and diastolic blood pressure in a small group of subjects with essential hypertension. Hypertension is another risk factor for atherosclerosis and coronary heart disease. Another study showed pyridoxine hydrochloride to inhibit ADP- or epinephrine-induced platelet aggregation and to lower total cholesterol levels and increase HDL-cholesterol levels, again in a small group of subjects. Vitamin B6, in the form of pyridoxal 5'-phosphate, was found to protect vascular endothelial cells in culture from injury by activated platelets. Endothelial injury and dysfunction are critical initiating events in the pathogenesis of atherosclerosis. Human studies have demonstrated that vitamin B6 deficiency affects cellular and humoral responses of the immune system. Vitamin B6 deficiency results in altered lymphocyte differentiation and maturation, reduced delayed-type hypersensitivity (DTH) responses, impaired antibody production, decreased lymphocyte proliferation and decreased interleukin (IL)-2 production, among other immunologic activities.
Selenium is a trace metal in the human body particularly important as a component of glutathione peroxidase, an important enzyme in the prevention of cellular damage by free radicals and reactive oxygen species
Selenium is incorporated into many different selenoproteins which serve various functions throughout the body .
Vitamin A plays an essential role in the function of retina and is essential for growh and differentiation of epithelial tissue.
Vitamin A is effective for the treatment of Vitamin A deficiency. Vitamin A refers to a group of fat-soluble substances that are structurally related to and possess the biological activity of the parent substance of the group called all-trans retinol or retinol. Vitamin A plays vital roles in vision, epithelial differentiation, growth, reproduction, pattern formation during embryogenesis, bone development, hematopoiesis and brain development. It is also important for the maintenance of the proper functioning of the immune system.
Trade Name | Incobal Plus |
Generic | Folic Acid + Mecobalamin + Pyridoxine + Selenium + Vitamin A |
Weight | methylcobalamin |
Type | Capsule, Injection |
Therapeutic Class | |
Manufacturer | Intas Pharmaceuticals Ltd |
Available Country | India |
Last Updated: | January 7, 2025 at 1:49 am |
Uses
Prophylaxis of megaloblastic anaemia in pregnancy, Supplement for women of child-bearing potential, Folate-deficient megaloblastic anaemia, Prophylaxis of neural tube defect in pregnancy
Mecobalamin is used for-
- Peripheral Neuropathies
- Diabetic Neuropathy
- Verteberal Syndrome
- Nerve Compression Syndrome
- Multiple sclerosis
- Amyotrophic lateral sclerosis
- Parkinson’s disease
- Alzheimer’s disease
- Diabetic retinopathy
- Entrapment neuropathy
- Drug induced neuropathy
- Megaloblastic anemia due to Vitamin B12 deficiency
Pyridoxine (vitamin B6) is used to prevent or treat low levels of vitamin B6 in people who do not get enough of the vitamin from their diets. Most people who eat a normal diet do not need extra vitamin B6. However, some conditions (such as alcoholism, liver disease, overactive thyroid, heart failure) or medications (such as isoniazid, cycloserine, hydralazine, penicillamine) can cause low levels of vitamin B6. Vitamin B6 plays an important role in the body. It is needed to maintain the health of nerves, skin, and red blood cells.
Pyridoxine has been used to prevent or treat a certain nerve disorder (peripheral neuropathy) caused by certain medications (such as isoniazid). It has also been used to treat certain hereditary disorders (such as xanthurenic aciduria, hyperoxaluria, homocystinuria).
Selenium is an ingredient found in a variety of supplements and vitamins.
For the supplementation of total parenteral nutrition to prevent hyposelenemia .
Effective for:
- Vitamin A deficiency. Taking vitamin A by mouth is effective for preventing and treating symptoms of vitamin A deficiency. Vitamin A deficiency can occur in people with protein deficiency, diabetes, over-active thyroid, fever, liver disease, cystic fibrosis, or an inherited disorder called abetalipoproteinemia.
Possibly Effective for:
- Breast cancer. Premenopausal women with a family history of breast cancer who consume high levels of vitamin A in their diet seem to have reduced risk of developing breast cancer. It is not known if taking vitamin A supplements has the same benefit.
- Cataracts. Research suggests that high intake of vitamin A in the diet is linked to a lower risk of developing cataracts.
- Diarrhea related to HIV. Taking vitamin A along with conventional medicines seems to decrease the risk of death from diarrhea in HIV-positive children with vitamin A deficiency.
- Malaria. Taking vitamin A by mouth seems to decrease malaria symptoms in children less than 3 years-old living in areas where malaria is common.
- Measles. Taking vitamin A by mouth seems to reduce the risk of measles complications or death in children with measles and vitamin A deficiency.
- Precancerous lesions in the mouth (oral leukoplakia). Research suggests that taking vitamin A can help treat precancerous lesions in the mouth.
- Recovery from laser eye surgery (photoreactive keratectomy). Taking vitamin A by mouth along with vitamin E seems to improve healing after laser eye surgery.
- Complications after pregnancy. Taking vitamin A seems to reduce the risk of diarrhea and fever after pregnancy in malnourished women.
- Complications during pregnancy. Taking vitamin A by mouth seems to reduce the risk of death and night blindness during pregnancy in malnourished women.
- Eye disease affecting the retina (retinitis pigmentosa). Research suggests that taking vitamin A can slow the progression of an eye disease that causes damage to the retina.
Incobal Plus is also used to associated treatment for these conditions: Anaemia folate deficiency, Folate deficiency, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Latent Iron Deficiency, Neural Tube Defects (NTDs), Vitamin Deficiency, Methotrexate toxicity, Nutritional supplementationVitamin B12 Deficiency, Nutritional supplementationBackache, Dizziness, Fever, Headache, Hepatic; Functional Disturbance, Hepatitis, Iron Deficiency Anemia (IDA), Ketosis, Macrocytic anemia, Menière's Disease, Menstrual Distress (Dysmenorrhea), Metabolic Acidosis, Motion Sickness, Nausea and vomiting, Neuralgia, Sciatic, Neuritis, Neurological Conditions caused by B Vitamin Deficiency, Secondary anemia, Soreness, Muscle, Toothache, Toxinfectious state, Trigeminal Neuralgia (TN), Vitamin B1 deficiency, Vitamin B12 Deficiency, Vitamin B6 Deficiency, Vitamin Deficiency, Minor aches and pains, Minor pain, Nutritional supplementation, Supplementation, Vitamin supplementation, Wellness of the LiverNutritional supplementationDeficiency, Vitamin A, Deficiency, Vitamin D, Degenerative Retinal Disorders, Disorder of the Epithelium, Disorder of the Mesoderm, Inner ear disorder, Vitamin Deficiency, Vitamin E Deficiency, Nutritional supplementation
How Incobal Plus works
Folic acid, as it is biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by dihydrofolate reductase (DHFR). These folic acid congeners are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids, methylate tRNA, and generate and use formate. Using vitamin B12 as a cofactor, folic acid can normalize high homocysteine levels by remethylation of homocysteine to methionine via methionine synthetase.
Vitamin B6 is the collective term for a group of three related compounds, pyridoxine (PN), pyridoxal (PL) and pyridoxamine (PM), and their phosphorylated derivatives, pyridoxine 5'-phosphate (PNP), pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP). Although all six of these compounds should technically be referred to as vitamin B6, the term vitamin B6 is commonly used interchangeably with just one of them, pyridoxine. Vitamin B6, principally in its biologically active coenzyme form pyridoxal 5'-phosphate, is involved in a wide range of biochemical reactions, including the metabolism of amino acids and glycogen, the synthesis of nucleic acids, hemogloblin, sphingomyelin and other sphingolipids, and the synthesis of the neurotransmitters serotonin, dopamine, norepinephrine and gamma-aminobutyric acid (GABA).
Selenium is first metabolized to selenophosphate and selenocysteine. Selenium incorporation is genetically encoded through the RNA sequence UGA . This sequence is recognized by RNA ste loop structures called selenocysteine inserting sequences (SECIS). These structures require the binding of SECIS binding proteins (SBP-2) to recognize selenocystiene. The specialized tRNA is first bound to a serine residue which is then enzymatically processed to a selylcysteyl-tRNA by selenocystiene sythase using selenophosphate as a selenium donor. Other unidentified proteins are required as part of the binding of this tRNA to the ribosome. Selenoproteins appear to be necessary for life as mice with the specialized tRNA gene knocked out exhibited early embryonic lethality .
The most important selenoproteins seem to be the glutathione peroxidases and thioredoxin reductases which are part of the body's defenses againts reactive oxygen species (ROS) . The importance of selenium in these anti-oxidant proteins has been implicated in the reduction of atherosclerosis by preventing the oxidation of low density lipoprotein . Selenium supplementation is also being investigated in the prevention of cancer and has been suggested to be beneficial to immune function .
Vision:Vitamin A (all-trans retinol) is converted in the retina to the 11-cis-isomer of retinaldehyde or 11-cis-retinal. 11-cis-retinal functions in the retina in the transduction of light into the neural signals necessary for vision. 11-cis-retinal, while attached to opsin in rhodopsin is isomerized to all-trans-retinal by light. This is the event that triggers the nerve impulse to the brain which allows for the perception of light. All-trans-retinal is then released from opsin and reduced to all-trans-retinol. All-trans-retinol is isomerized to 11-cis-retinol in the dark, and then oxidized to 11-cis-retinal. 11-cis-retinal recombines with opsin to re-form rhodopsin. Night blindness or defective vision at low illumination results from a failure to re-synthesize 11-cis retinal rapidly.
Epithelial differentiation: The role of Vitamin A in epithelial differentiation, as well as in other physiological processes, involves the binding of Vitamin A to two families of nuclear retinoid receptors (retinoic acid receptors, RARs; and retinoid-X receptors, RXRs). These receptors function as ligand-activated transcription factors that modulate gene transcription. When there is not enough Vitamin A to bind these receptors, natural cell differentiation and growth are interrupted.
Dosage
Incobal Plus dosage
Supplement for women of child-bearing potential: 0.4 mg daily.
Folate-deficient megaloblastic anaemia: 5 mg daily for 4 mth, up to 15 mg daily in malabsorption states. Continued dosing at 5 mg every 1-7 days may be needed in chronic haemolytic states, depending on the diet and rate of haemolysis.
Prophylaxis of neural tube defect in pregnancy: 4 or 5 mg daily starting before pregnancy and continued through the 1st trimester.
Prophylaxis of megaloblastic anaemia in pregnancy: 0.2-0.5 mg daily.
Tablet: The usual adult dosage is one 500 mcg tablet three times daily. The dosage should be adjusted according to the age of patient and the severity of symptoms.
Injection:
- Peripheral neuropathies: The usual adult dosage is one ampoule equivalent to 500 mcg of Mecobalamin, administered intramuscularly or intravenously three times a week.The dosage should be adjusted according to the age of patient and the severity of symptoms.
- Megaloblastic anemia: The usual adult dosage is one ampoule equivalent to 500 mcg of Mecobalamin, administered intramuscularly or intravenously three times a week. After about two months of administration, dosage should be changed to one ampoule equivalent to 500 mcg of Mecobalamin every one to three months as maintenance therapy
ADULTS:
BY MOUTH:
- For hereditary sideroblastic anemia: Initially, 200-600 mg of vitamin B6 is used. The dose is decreased to 30-50 mg per day after an adequate response.
- For vitamin B6 deficiency: In most adults, the typical dose is 2.5-25 mg daily for three weeks then 1.5-2.5 mg per day thereafter. In women taking birth control pills, the dose is 25-30 mg per day.
- For abnormally high levels of homocysteine in the blood: For reducing high levels of homocysteine in the blood after childbirth, 50-200 mg of vitamin B6 has been taken alone. Also, 100 mg of vitamin B6 has been taken in combination with 0.5 mg of folic acid.
- For preventing macular degeneration: 50 mg of vitamin B6 in the form of pyridoxine has been used daily in combination with 1000 mcg of vitamin B12 (cyanocobalamin) 1000 mcg and 2500 mcg of folic acid for about 7 years.
- For hardening of the arteries (atherosclerosis): A specific supplement (Kyolic, Total Heart Health, Formula 108, Wakunga) containing 250 mg of aged garlic extract, 100 mcg of vitamin B12, 300 mcg of folic acid, 12.5 mg of vitamin B6, and 100 mg of L-argininedaily for 12 months.
- For kidney stones: 25-500 mg of vitamin B6 has been used daily.
- For nausea during pregnancy: 10-25 mg of vitamin B6 taken three or four times per day has been used. In people who don't respond to vitamin B6 alone, a combination product containing vitamin B6 and the drug doxylamine (Diclectin, Duchesnay Inc.) is used three or four times per day. Also, another product containing 75 mg of vitamin B6, 12 mcg of vitamin B12, 1 mg of folic acid, and 200 mg of calcium (PremesisRx, KV Pharmaceuticals) is used daily.
- For symptoms of premenstrual syndrome (PMS): 50-100 mg of vitamin B6 is used daily, alone or along with 200 mg of magnesium.
- For treating tardive dyskinesia: 100 mg of vitamin B6 per day has been increased weekly up to 400 mg per day, given in two divided doses.
INJECTED INTO THE MUSCLE:
- Hereditary sideroblastic anemia: 250 mg of vitamin B6 daily, reduced to 250 mg of vitamin B6 weekly once adequate response is achieved.
CHILDREN:
BY MOUTH:
- For kidney stones: Up to 20 mg/kg daily in children aged 5 years and up.
INJECTED INTO THE VEIN OR MUSCLE:
- For seizures that respond to vitamin B6 (pyridoxine-dependent seizures): 10-100 mg is recommended.
The daily recommended dietary allowances (RDAs) of vitamin B6 are:
- Infants 0-6 months, 0.1 mg
- Infants 7-12 months, 0.3 mg
- Children 1-3 years, 0.5 mg
- Children 4-8 years, 0.6 mg
- Children 9-13 years, 1 mg
- Males 14-50 years, 1.3 mg
- Males over 50 years, 1.7 mg
- Females 14-18 years, 1.2 mg
- Females 19-50 years, 1.3 mg
- Females over 50 years, 1.5 mg
- Pregnant women, 1.9 mg
- Breast-feeding women, 2 mg
- Some researchers think the RDA for women 19-50 years should be increased to 1.5-1.7 mg per day.
The recommended maximum daily intake is:
- Children 1-3 years, 30 mg
- Children 4-8 years, 40 mg
- Children 9-13 years, 60 mg
Adults, pregnant and breast-feeding women:
- 14-18 years, 80 mg
- over 18 years, 100 mg
Vitamin A deficiency For severe deficiency with corneal changes: 500,000 unit/day for 3 days, followed by 50,000 unit/day for 2 wk and then 10,000-20,000 unit/day for 2 mth as follow-up therapy.
For cases without corneal changes: 10,000-25,000 unit/day until clinical improvement occurs (usually 1 -2 wk).
May be taken with or without food.
Side Effects
GI disturbances, hypersensitivity reactions; bronchospasm.
Generally Mecobalamin is well tolerated. However, a few side effects like GI discomfort (including anorexia, nausea or diarrhea) & rash may be seen after administration of Mecobalamin.
Pyridoxine usually has no side effects when used in recommended doses.
If your doctor has prescribed this medication, remember that he or she has judged that the benefit to you is greater than the risk of side effects. Many people using this medication do not have serious side effects.
Pyridoxine can cause side effects when taken in large doses for a long time. Tell your doctor right away if any of these unlikely but serious side effects occur: headache, nausea, drowsiness, numbness/tingling of arms/legs.
A very serious allergic reaction to this drug is rare. However, seek immediate medical attention if you notice any symptoms of a serious allergic reaction, including: rash, itching/swelling (especially of the face/tongue/throat), severe dizziness, trouble breathing.
This is not a complete list of possible side effects. If you notice other effects not listed above, contact your doctor or pharmacist.
Hypervitaminosis A characterised by fatigue, irritability, anorexia, weight loss, vomiting and other Gl disturbances, low-grade fever, hepatosplenomegaly, skin changes, alopoecia, dry hair, cracking and bleeding lips, SC swelling, nocturia, pains in bones and joints.
Toxicity
IPR-MUS LD50 85 mg/kg,IVN-GPG LD50 120 mg/kg, IVN-MUS LD50 239 mg/kg, IVN-RAT LD50 500 mg/kg, IVN-RBT LD50 410 mg/kg
Oral Rat LD50 = 4 gm/kg. Toxic effects include convulsions, dyspnea, hypermotility, diarrhea, ataxia and muscle weakness.
Oral LD50 of 6700mg/kg in rats . Selenium exposure is teratogenic and can result in fetal death as tested in mice. Chronic toxicity is characterized by hair loss, white horizontal streaking on fingernails, paronchyia, fatigue, irritability, hyperreflexia, nausea, vomiting, garlic odor on breath, and metallic taste . Serum selenium correlates weakly with symtoms. Blood chemistry as well as liver and kidney function are normally unnaffected. Acute toxicity presents as stupor, respiratory depression, and hypotension. ST elevations and t-wave changes characteristic of myocardial infarction may be observed.
Acute toxicity to vitamin A can occur when adults or children ingest >100x or >20x the RDA, respectively, over a period of hours or a few days. The RDA for vitamin A differs depending on age and sex and can range from 300 - 900 μg retinol activity equivalents (RAE) per day. Symptoms of acute systemic toxicity generally include mucocutaneous involvement (e.g. xerosis, cheilitis, skin peeling) and may involve mental status changes. Children are typically more susceptible to acute vitamin A toxicity - daily intakes of as little as 1500 IU/kg have been observed to result in toxicity.
Chronic vitamin A toxicity can develop following the long-term ingestion of high vitamin A doses. While there is a wide variation in the lowest toxic vitamin A dose, the ingestion of >25 000 IU daily for 6 years or 100,000 IU daily for 6 months is considered to be toxic. Chronic vitamin A toxicity can affect many organ systems and can lead to the development of osteoporosis and CNS effects (e.g. headaches).
Precaution
Treatment resistance may occur in patients with depressed haematopoiesis, alcoholism, deficiencies of other vitamins. Neonates.
The medicine should not be used for months if there is no response at all after its use for a certain period of time.
Before taking pyridoxine, tell your doctor or pharmacist if you are allergic to it; or if you have any other allergies. This product may contain inactive ingredients, which can cause allergic reactions or other problems. Talk to your pharmacist for more details.
During pregnancy, this vitamin has been found to be safe when used in recommended doses.
This vitamin passes into breast milk and is considered to be safe during breast-feeding when used in recommended doses. Consult your doctor for more information.
Cholestatic jaundice; fat-malabsorption conditions. Monitor patients closely for toxicity. Liver impairment and children.
Interaction
Antiepileptics, oral contraceptives, anti-TB drugs, alcohol, aminopterin, methotrexate, pyrimethamine, trimethoprim and sulphonamides may result to decrease in serum folate contrations. Decreases serum phenytoin concentrations.
Decreased GI tract absorption with neomycin, aminosalicylic acid, H2-blockers and colchicine. Reduced serum concentrations with oral contraceptives. Reduced effects in anaemia with parenteral chloramphenicol.
The effects of some drugs can change if you take other drugs or herbal products at the same time. This can increase your risk for serious side effects or may cause your medications not to work correctly. These drug interactions are possible, but do not always occur. Your doctor or pharmacist can often prevent or manage interactions by changing how you use your medications or by close monitoring.
To help your doctor and pharmacist give you the best care, be sure to tell your doctor and pharmacist about all the products you use (including prescription drugs, nonprescription drugs, and herbal products) before starting treatment with this product. While using this product, do not start, stop, or change the dosage of any other medicines you are using without your doctor's approval.
Some products that may interact with this vitamin include: altretamine, cisplatin, phenytoin.
This vitamin may interfere with certain laboratory tests (including urine test for urobilinogen), possibly causing false test results. Make sure laboratory personnel and all your doctors know you use this vitamin.
Decreased absorption with neomycin. Increased risk of hypervitaminosis A with synthetic retinoids eg, acitretin, isotretinoin and tretinoin. Increased risk of toxicity when used with alcohol.
Volume of Distribution
Tetrahydrofolic acid derivatives are distributed to all body tissues but are stored primarily in the liver.
Pyridoxine main active metabolite, pyridoxal 5’-phosphate, is released into the circulation (accounting for at least 60% of circulating vitamin B6) and is highly protein bound, primarily to albumin.
Elimination Route
Folic acid is absorbed rapidly from the small intestine, primarily from the proximal portion. Naturally occurring conjugated folates are reduced enzymatically to folic acid in the gastrointestinal tract prior to absorption. Folic acid appears in the plasma approximately 15 to 30 minutes after an oral dose; peak levels are generally reached within 1 hour.
The B vitamins are readily absorbed from the gastrointestinal tract, except in malabsorption syndromes. Pyridoxine is absorbed mainly in the jejunum. The Cmax of pyridoxine is achieved within 5.5 hours.
Oral bioavailability of 90% when given as L-selenomethionine . Tmax of 9.17h.
Readily absorbed from the normal gastrointestinal tract
Half Life
The total adult body pool consists of 16 to 25 mg of pyridoxine. Its half-life appears to be 15 to 20 days.
Half life was observed to increase with chronic dosing time . For day 1-2 half life was 1.7 days. For day 2-3 half life was 3 days. For day 3-14 half life was 11.1 days.
1.9 hours
Elimination Route
After a single oral dose of 100 mcg of folic acid in a limited number of normal adults, only a trace amount of the drug appeared in the urine. An oral dose of 5 mg in 1 study and a dose of 40 mcg/kg of body weight in another study resulted in approximately 50% of the dose appearing in the urine. After a single oral dose of 15 mg, up to 90% of the dose was recovered in the urine. A majority of the metabolic products appeared in the urine after 6 hours; excretion was generally complete within 24 hours. Small amounts of orally administered folic acid have also been recovered in the feces. Folic acid is also excreted in the milk of lactating mothers.
The major metabolite of pyridoxine, 4-pyridoxic acid, is inactive and is excreted in urine
Mainly excreted in urine as 1beta-methylseleno-N-acetyl-d-galactosamine and trimethylselenonium . The amount excreted as 1beta-methylseleno-N-acetyl-d-galactosamine plateaus at doses around 2microg after which the amount excreted as trimethylselenonium increases. Some selenium is also excreted in feces when given orally .
Pregnancy & Breastfeeding use
Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).
Not recommended during pregnancy & lactation.
Category A: Controlled studies in women fail to demonstrate a risk to the foetus in the 1st trimester (and there is no evidence of a risk in later trimesters), and the possibility of foetal harm remains remote.
Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).
Contraindication
Undiagnosed megaloblastic anaemia; pernicious, aplastic or normocytic anaemias.
Hypersensitivity to any component of this product.
Hypervitaminosis A; pregnancy (dose exceeding RDA).
Special Warning
Use in children: Not recommended.
Storage Condition
Store at 15-30° C.
Oral: Store at room temperature. Protect from moisture and light.
Parenteral: Store at room temperature. Do not expose to direct light.