Infuvite Pediatric
Infuvite Pediatric Uses, Dosage, Side Effects, Food Interaction and all others data.
Alpha-tocopherol is the primary form of vitamin E that is preferentially used by the human body to meet appropriate dietary requirements. In particular, the RRR-alpha-tocopherol (or sometimes called the d-alpha-tocopherol stereoisomer) stereoisomer is considered the natural formation of alpha-tocopherol and generally exhibits the greatest bioavailability out of all of the alpha-tocopherol stereoisomers. Moreover, RRR-alpha-tocopherol acetate is a relatively stabilized form of vitamin E that is most commonly used as a food additive when needed .
Alpha-tocopherol acetate is subsequently most commonly indicated for dietary supplementation in individuals who may demonstrate a genuine deficiency in vitamin E. Vitamin E itself is naturally found in various foods, added to others, or used in commercially available products as a dietary supplement. The recommended dietary allowances (RDAs) for vitamin E alpha-tocopherol are: males = 4 mg (6 IU) females = 4 mg (6 IU) in ages 0-6 months, males = 5 mg (7.5 IU) females = 5 mg (7.5 IU) in ages 7-12 months, males = 6 mg (9 IU) females = 6 mg (9 IU) in ages 1-3 years, males = 7 mg (10.4 IU) females = 7 mg (10.4 IU) in ages 4-8 years, males = 11 mg (16.4 IU) females = 11 mg (16.4 IU) in ages 9-13 years, males = 15 mg (22.4 IU) females = 15 mg (22.4 IU) pregnancy = 15 mg (22.4 IU) lactation = 19 mg (28.4 IU) in ages 14+ years . Most individuals obtain adequate vitamin E intake from their diets; genuine vitamin E deficiency is considered to be rare.
Nevertheless, vitamin E is known to be a fat-soluble antioxidant that has the capability to neutralize endogenous free radicals. This biologic action of vitamin E consequently continues to generate ongoing interest and study in whether or not its antioxidant abilities may be used to help assist in preventing or treating a number of different conditions like cardiovascular disease, ocular conditions, diabetes, cancer and more. At the moment however, there exists a lack of formal data and evidence to support any such additional indications for vitamin E use.
A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk.
Biotin is a water-soluble B-complex vitamin which is composed of an ureido ring fused with a tetrahydrothiophene ring, which attaches a valeric acid substituent at one of its carbon atoms. Biotin is used in cell growth, the production of fatty acids, metabolism of fats, and amino acids. It plays a role in the Kreb cycle, which is the process in which energy is released from food. Biotin not only assists in various metabolic chemical conversions, but also helps with the transfer of carbon dioxide. Biotin is also helpful in maintaining a steady blood sugar level. Biotin is often recommended for strengthening hair and nails. Consequenty, it is found in many cosmetic and health products for the hair and skin. Biotin deficiency is a rare nutritional disorder caused by a deficiency of biotin. Initial symptoms of biotin deficiency include: Dry skin, Seborrheic dermatitis, Fungal infections, rashes including erythematous periorofacial macular rash, fine and brittle hair, and hair loss or total alopecia. If left untreated, neurological symptoms can develop, including mild depression, which may progress to profound lassitude and, eventually, to somnolence; changes in mental status, generalized muscular pains (myalgias), hyperesthesias and paresthesias. The treatment for biotin deficiency is to simply start taking some biotin supplements. A lack of biotin in infants will lead to a condition called seborrheic dermatitis or "cradle cap". Biotin deficiencies are extremely rare in adults but if it does occur, it will lead to anemia, depression, hair loss, high blood sugar levels, muscle pain, nausea, loss of appetite and inflamed mucous membranes.
Vitamin D is essential for normal bone growth and development and to maintain bone density. It is also necessary for utilization of both Calcium and Phosphorus. Vitamin D acts as a hormone and increases reabsorption of Calcium and Phosphorus by the kidneys and increased bone turnover.
The in vivo synthesis of the predominant two biologically active metabolites of vitamin D occurs in two steps. The first hydroxylation of vitamin D3 cholecalciferol (or D2) occurs in the liver to yield 25-hydroxyvitamin D while the second hydroxylation happens in the kidneys to give 1, 25-dihydroxyvitamin D . These vitamin D metabolites subsequently facilitate the active absorption of calcium and phosphorus in the small intestine, serving to increase serum calcium and phosphate levels sufficiently to allow bone mineralization . Conversely, these vitamin D metabolites also assist in mobilizing calcium and phosphate from bone and likely increase the reabsorption of calcium and perhaps also of phosphate via the renal tubules . There exists a period of 10 to 24 hours between the administration of cholecalciferol and the initiation of its action in the body due to the necessity of synthesis of the active vitamin D metabolites in the liver and kidneys . It is parathyroid hormone that is responsible for the regulation of such metabolism at the level of the kidneys .
Vitamin B12 (cyanocobalamin) is required for the maintenance of normal erthropoiesis, nucleprotein and myelin synthesis, cell reproduction and normal growth; Coenzyme; metabolic functions include protein synthesis and carbohydrate metabolism. Plays role in cell replication and hematopoiesis.
General effects
Cyanocobalamin corrects vitamin B12 deficiency and improves the symptoms and laboratory abnormalities associated with pernicious anemia (megaloblastic indices, gastrointestinal lesions, and neurologic damage). This drug aids in growth, cell reproduction, hematopoiesis, nucleoprotein, and myelin synthesis. It also plays an important role in fat metabolism, carbohydrate metabolism, as well as protein synthesis. Cells that undergo rapid division (for example, epithelial cells, bone marrow, and myeloid cells) have a high demand for vitamin B12 .
Parenteral cyanocobalamin effects
Pantothenic acid is essential to normal epithelial function. The topical use of dexpanthenol, the stable alcoholic analog of pantothenic acid, is based on good skin penetration and high local concentrations of dexpanthenol when administered in an adequate vehicle, such as water-in-oil emulsions. Topical dexpanthenol acts like a moisturizer, improving stratum corneum hydration, reducing trans-epidermal water loss and maintaining skin softness and elasticity.Dexpanthenol is an alcohol derivative of pantothenic acid, a component of the B complex vitamins and an essential component of a normally functioning epithelium. Dexpanthenol is enzymatically cleaved to form pantothenic acid, which is an essential component of Coenzyme A, which acts as a cofactor in many enzymatic reactions that are important for protein metabolism in the epithelium.Dermatological effects of the topical use of dexpanthenol include increased fibroblast proliferation and accelerated re-epithelialization in wound healing. Furthermore, it acts as a topical protectant, moisturizer, and has demonstrated anti-inflammatory properties
Pantothenic acid is a precursor of coenzyme A, which serves as a cofactor for a variety of enzyme-catalyzed reactions involving transfer of acetyl groups. The final step in the synthesis of acetylcholine consists of the choline acetylase transfer of acetyl group from acetylcoenzyme A to choline. Acetylcholine is the neurohumoral transmitter in the parasympathetic system and as such maintains the normal functions of the intestine. Decrease in acetylcholine content would result in decreased peristalsis and in extreme cases adynamic ileus.
Folic acid is essential for the production of certain coenzymes in many metabolic systems such as purine and pyrimidine synthesis. It is also essential in the synthesis and maintenance of nucleoprotein in erythropoesis. It also promotes WBC and platelet production in folate-deficiency anaemia.
Folic acid is a water-soluble B-complex vitamin found in foods such as liver, kidney, yeast, and leafy, green vegetables. Also known as folate or Vitamin B9, folic acid is an essential cofactor for enzymes involved in DNA and RNA synthesis. More specifically, folic acid is required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. Folic acid is the precursor of tetrahydrofolic acid, which is involved as a cofactor for transformylation reactions in the biosynthesis of purines and thymidylates of nucleic acids. Impairment of thymidylate synthesis in patients with folic acid deficiency is thought to account for the defective deoxyribonucleic acid (DNA) synthesis that leads to megaloblast formation and megaloblastic and macrocytic anemias. Folic acid is particularly important during phases of rapid cell division, such as infancy, pregnancy, and erythropoiesis, and plays a protective factor in the development of cancer. As humans are unable to synthesize folic acid endogenously, diet and supplementation is necessary to prevent deficiencies. In order to function properly within the body, folic acid must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted by anti-metabolite therapies such as Methotrexate as they function as DHFR inhibitors to prevent DNA synthesis in rapidly dividing cells, and therefore prevent the formation of DHF and THF.
In general, folate serum levels below 5 ng/mL indicate folate deficiency, and levels below 2 ng/mL usually result in megaloblastic anemia.
Trade Name | Infuvite Pediatric |
Generic | Asorbic acid + vitamin a palmitate + cholecalciferol + thiamine hydrochloride + riboflavin-5 phosphate sodium + pyridoxine hydrochloride + niacinamide + dexpanthenol + alpha-tocopherol acetate + vitamin k1 + folic acid + biotin + cyanocobalamin |
Type | Intravenous infusion |
Therapeutic Class | |
Manufacturer | |
Available Country | United States, |
Last Updated: | September 19, 2023 at 7:00 am |
Uses
alpha-Tocopherol acetate is a form of vitamin E used to treat and prevent vitamin deficiencies.
The primary health-related use for which alpha-tocopherol acetate is formally indicated is as a dietary supplement for patients who demonstrate a genuine vitamin E deficiency. At the same time, vitamin E deficiency is generally quite rare but may occur in premature babies of very low birth weight (< 1500 grams), individuals with fat-malabsorption disorders (as fat is required for the digestive tract to absorb vitamin E), or individuals with abetalipoproteinemia - a rare, inherited disorder that causes poor absorption of dietary fat - who require extremely large doses of supplemental vitamin E daily (around 100 mg/kg or 5-10 g/day) . In all such cases, alpha-tocopherol is largely the preferred form of vitamin E to be administered.
Elsewhere, vitamin E's chemical profile as a fat-soluble antioxidant that is capable of neutralizing free radicals in the body continues to generate ongoing interest and study regarding how and whether or not the vitamin can help prevent or delay various chronic diseases associated with free radicals or other potential biological effects that vitamin E possesses like cardiovascular diseases, diabetes, ocular conditions, immune illnesses, cancer, and more . None of these ongoing studies have yet to elucidate any formally significant evidence, however .
Biotin is a B-complex vitamin found in many multivitamin products.
For nutritional supplementation, also for treating dietary shortage or imbalance.
Vitamin D is used to treat and prevent bone disorders (such as rickets, osteomalacia). Vitamin D is made by the body when skin is exposed to sunlight. Sunscreen, protective clothing, limited exposure to sunlight, dark skin, and age may prevent getting enough vitamin D from the sun.
Vitamin D with calcium is used to treat or prevent bone loss (osteoporosis). Vitamin D is also used with other medications to treat low levels of calcium or phosphate caused by certain disorders (such as hypoparathyroidism, pseudohypoparathyroidism, familial hypophosphatemia). It may be used in kidney disease to keep calcium levels normal and allow normal bone growth.
This preparation is used for Pernicious anemia,Vitamin B12 deficiency due to low intake from food,Thyrotoxicosis, Hemorrhage, Malignancy, Liver or kidney disease,Gastric bypass surgery, Total or partial gastrectomy, Gluten enteropathy or sprue, Folic acid deficiency, Macrocytic anaemia
Dexpanthenol is used for-
- For prevention and treatment of diaper rash in infants.
- For prevention and treatment of cracked or sore nipples in nursing women.
- For prevention and treatment of chafed, cracked or split skin.
- For treatment of light skin wounds and dry skin
Prophylaxis of megaloblastic anaemia in pregnancy, Supplement for women of child-bearing potential, Folate-deficient megaloblastic anaemia, Prophylaxis of neural tube defect in pregnancy
Infuvite Pediatric is also used to associated treatment for these conditions: Deficiency, Vitamin A, Vitamin Deficiency, Vitamin E Deficiency, Deficiency, Vitamin D, Nutritional supplementationVitamin Deficiency, Nutritional supplementationCalcium and Vitamin D Deficiencies, Deficiency of Vitamin D3, Deficiency, Vitamin A, Deficiency, Vitamin D, Fracture Bone, Hip Fracture, Hypoparathyroidism, Hypophosphatemia, Familial, Menopause, Osteomalacia, Osteoporosis, Postmenopausal Osteoporosis, Vertebral Fractures, Vitamin D Resistant Rickets, Vitamin Deficiency, Severe Bone Resorption, Spine fracture, Calcium supplementation, Nutritional supplementation, Vitamin D Supplementation, Vitamin supplementationAnemia, Anemia, Pernicious, Combined Vitamin B1 and B12 deficiency, Convalescence, Diabetic Neuropathies, Folate deficiency, Iron Deficiency Anemia (IDA), Neuritis, Vitamin B1 deficiency, Vitamin B12 Deficiency, Vitamin B12 concentration, Vitamin B6 Deficiency, Vitamin Deficiency, Nutritional supplementation, Vitamin supplementationAllergic Rhinitis (AR), Bursitis, Canker Sore, Contusions, Dermabrasion, Diaper Rash, Dry Skin, Edema, Hoarseness, Inflammation, Inflammation of Mouth, Insect Bites, Lateral Epicondylitis, Lesions of the Mucous Membranes, Nasal Congestion, Pharyngeal inflammation, Pruritus, Respiratory Tract Infections (RTI), Seasonal Allergic Rhinitis, Sinusitis, Skin Roughness, Sore Throat, Sunburn, Tendinitis, Tooth Extraction Site Healing, Traumatic Injuries caused by Dental Prosthesis, Urticaria, Vitamin Deficiency, Wounds caused by Surgery, Oral of the Tonsils, Dry, cracked skin, Dryness of the nose, Superficial Conjunctival injuries, Superficial Corneal injuries, Superficial Traumatic Injuries of the Nasal Mucosa, Superficial Wounds, Irrigation therapy, Nutritional supplementation, Oropharyngeal antisepsis, Vitamin supplementationAnaemia folate deficiency, Folate deficiency, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Latent Iron Deficiency, Neural Tube Defects (NTDs), Vitamin Deficiency, Methotrexate toxicity, Nutritional supplementation
How Infuvite Pediatric works
Vitamin E's antioxidant capabilities are perhaps the primary biological action associated with alpha-tocopherol. In general, antioxidants protect cells from the damaging effects of free radicals, which are molecules that consist of an unshared electron . These unshared electrons are highly energetic and react rapidly with oxygen to form reactive oxygen species (ROS) . In doing so, free radicals are capable of damaging cells, which may facilitate their contribution to the development of various diseases . Moreover, the human body naturally forms ROS when it converts food into energy and is also exposed to environmental free radicals contained in cigarette smoke, air pollution, or ultraviolet radiation from the sun . It is believed that perhaps vitamin E antioxidants might be able to protect body cells from the damaging effects of such frequent free radical and ROS exposure .
Specifically, vitamin E is a chain-breaking antioxidant that prevents the propagation of free radical reactions . The vitamin E molecule is specifically a peroxyl radical scavenger and especially protects polyunsaturated fatty acids within endogenous cell membrane phospholipids and plasma lipoproteins . Peroxyl free radicals react with vitamin E a thousand times more rapidly than they do with the aforementioned polyunsaturated fatty acids . Furthermore, the phenolic hydroxyl group of tocopherol reacts with an organic peroxyl radical to form an organic hydroperoxide and tocopheroxyl radical . This tocopheroxyl radical can then undergo various possible reactions: it could (a) be reduced by other antioxidants to tocopherol, (b) react with another tocopheroxyl radical to form non-reactive products like tocopherol dimers, (c) undergo further oxidation to tocopheryl quinone, or (d) even act as a prooxidant and oxidize other lipids .
In addition to the antioxidant actions of vitamin E, there have been a number of studies that report various other specific molecular functions associated with vitamin E . For example, alpha-tocopherol is capable of inhibiting protein kinase C activity, which is involved in cell proliferation and differentiation in smooth muscle cells, human platelets, and monocytes . In particular, protein kinase C inhibition by alpha-tocopherol is partially attributable to its attenuating effect on the generation of membrane-derived dialglycerol, a lipid that facilitates protein kinase C translocation, thereby increasing its activity .
In addition, vitamin E enrichment of endothelial cells downregulates the expression of intercellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), thereby decreasing the adhesion of blood cell components to the endothelium .
Vitamin E also upregulates the expression of cytosolic phospholipase A2 and cyclooxygenase-1 . The increased expression of these two rate-limiting enzymes in the arachidonic acid cascade explains the observation that vitamin E, in a dose-dependent fashion, enhanced the release of prostacyclin, a potent vasodilator and inhibitor of platelet aggregation in humans .
Furthermore, vitamin E can inhibit platelet adhesion, aggregation, and platelet release reactions . The vitamin can also evidently inhibit the plasma generation of thrombin, a potent endogenous hormone that binds to platelet receptors and induces aggregation of platelets . Moreover, vitamin E may also be able to decrease monocyte adhesion to the endothellium by downregulating expression of adhesion molecules and decreasing monocyte superoxide production .
Given these proposed biological activities of vitamin E, the substance continues to generate ongoing interest and studies in whether or not vitamin E can assist in delaying or preventing various diseases with any one or more of its biologic actions. For instance, studies continue to see whether vitamin E's ability to inhibit low-density lipoprotein oxidation can aid in preventing the development of cardiovascular disease or atherogenesis .
Similarly, it is also believed that if vitamin E can decrease the chance of cardiovascular disease then it can also decrease the chance of related diabetic disease and complications . In much the same way, it is also believed that perhaps the antioxidant abilities of vitamin E can neutralize free radicals that are constantly reacting and damaging cellular DNA . Furthermore, it is also believed that free radical damage does contribute to protein damage in the ocular lens - another free radical-mediated condition that may potentially be prevented by vitamin E use . Where it is also suggested that various central nervous system disorders like Parkinson's disease, Alzheimer's disease, Down's syndrome, and Tardive Dyskinesia possess some form of oxidative stress component, it is also proposed that perhaps vitamin E use could assist with its antioxidant action .
There have also been studies that report the possibility of vitamin E supplementation can improve or reverse the natural decline in cellular immune function in healthy, elderly individuals .
As of this time however, there is either only insufficient data or even contradicting data (where certain doses of vitamin E supplementation could even potentially increase all-cause mortality) on which to suggest the use of vitamin E could formally benefit in any of these proposed indications.
Biotin is necessary for the proper functioning of enzymes that transport carboxyl units and fix carbon dioxide, and is required for various metabolic functions, including gluconeogenesis, lipogenesis, fatty acid biosynthesis, propionate metabolism, and catabolism of branched-chain amino acids.
Most individuals naturally generate adequate amounts of vitamin D through ordinary dietary intake of vitamin D (in some foods like eggs, fish, and cheese) and natural photochemical conversion of the vitamin D3 precursor 7-dehydrocholesterol in the skin via exposure to sunlight .
Conversely, vitamin D deficiency can often occur from a combination of insufficient exposure to sunlight, inadequate dietary intake of vitamin D, genetic defects with endogenous vitamin D receptor, or even severe liver or kidney disease . Such deficiency is known for resulting in conditions like rickets or osteomalacia, all of which reflect inadequate mineralization of bone, enhanced compensatory skeletal demineralization, resultant decreased calcium ion blood concentrations, and increases in the production and secretion of parathyroid hormone . Increases in parathyroid hormone stimulate the mobilization of skeletal calcium and the renal excretion of phosphorus . This enhanced mobilization of skeletal calcium leads towards porotic bone conditions .
Ordinarily, while vitamin D3 is made naturally via photochemical processes in the skin, both itself and vitamin D2 can be found in various food and pharmaceutical sources as dietary supplements. The principal biological function of vitamin D is the maintenance of normal levels of serum calcium and phosphorus in the bloodstream by enhancing the efficacy of the small intestine to absorb these minerals from the diet . At the liver, vitamin D3 or D2 is hydroxylated to 25-hydroxyvitamin D and then finally to the primary active metabolite 1,25-dihydroxyvitamin D in the kidney via further hydroxylation . This final metabolite binds to endogenous vitamin d receptors, which results in a variety of regulatory roles - including maintaining calcium balance, the regulation of parathyroid hormone, the promotion of the renal reabsorption of calcium, increased intestinal absorption of calcium and phosphorus, and increased calcium and phosphorus mobilization of calcium and phosphorus from bone to plasma to maintain balanced levels of each in bone and the plasma .
In particular, calcitriol interacts with vitamin D receptors in the small intestine to enhance the efficiency of intestinal calcium and phosphorous absorption from about 10-15% to 30-40% and 60% increased to 80%, respectively . Furthermore, calcitriol binds with vitamin D receptors in osteoblasts to stimulate a receptor activator of nuclear factor kB ligand (or RANKL) which subsequently interacts with receptor activator of nuclear factor kB (NFkB) on immature preosteoclasts, causing them to become mature bone-resorbing osteoclasts . Such mature osteoclasts ultimately function in removing calcium and phosphorus from bone to maintain blood calcium and phosphorus levels . Moreover, calcitriol also stimulates calcium reabsorption from the glomerular filtrate in the kidneys .
Additionally, it is believed that when calcitriol binds with nuclear vitamin D receptors, that this bound complex itself binds to retinoic acid X receptor (RXR) to generate a heterodimeric complex that consequently binds to specific nucleotide sequences in the DNA called vitamin D response elements . When bound, various transcription factors attach to this complex, resulting in either up or down-regulation of the associated gene's activity. It is thought that there may be as much as 200 to 2000 genes that possess vitamin D response elements or that are influenced indirectly to control a multitude of genes across the genome . It is in this way that cholecalciferol is believed to function in regulating gene transcription associated with cancer risk, autoimmune disorders, and cardiovascular disease linked to vitamin D deficiency . In fact, there has been some research to suggest calcitriol may also be able to prevent malignancies by inducing cellular maturation and inducing apoptosis and inhibiting angiogenesis, exhibit anti-inflammatory effects by inhibiting foam cell formation and promoting angiogenesis in endothelial colony-forming cells in vitro, inhibit immune reactions by enhancing the transcription of endogenous antibiotics like cathelicidin and regulate the activity and differentiation of CD4+ T cells, amongst a variety of other proposed actions .
Vitamin B12 serves as a cofactor for methionine synthase and L-methylmalonyl-CoA mutase enzymes. Methionine synthase is essential for the synthesis of purines and pyrimidines that form DNA. L-methylmalonyl-CoA mutase converts L-methylmalonyl-CoA to succinyl-CoA in the degradation of propionate , an important reaction required for both fat and protein metabolism. It is a lack of vitamin B12 cofactor in the above reaction and the resulting accumulation of methylmalonyl CoA that is believed to be responsible for the neurological manifestations of B12 deficiency . Succinyl-CoA is also necessary for the synthesis of hemoglobin .
In tissues, vitamin B12 is required for the synthesis of methionine from homocysteine. Methionine is required for the formation of S-adenosylmethionine, a methyl donor for nearly 100 substrates, comprised of DNA, RNA, hormones, proteins, as well as lipids . Without vitamin B12, tetrahydrofolate cannot be regenerated from 5-methyltetrahydrofolate, and this can lead to functional folate deficiency , . This reaction is dependent on methylcobalamin (vitamin B12) as a co-factor and is also dependent on folate, in which the methyl group of methyltetrahydrofolate is transferred to homocysteine to form methionine and tetrahydrofolate. Vitamin B12 incorporates into circulating folic acid into growing red blood cells; retaining the folate in these cells . A deficiency of vitamin B12 and the interruption of this reaction leads to the development of megaloblastic anemia.
Dexpanthenol is an alcohol derivative of pantothenic acid, a component of the B complex vitamins and an essential component of a normally functioning epithelium. Dexpanthenol is enzymatically cleaved to form pantothenic acid, which is an essential component of Coenzyme A, which acts as a cofactor in many enzymatic reactions that are important for protein metabolism in the epithelium.
Dermatological effects of the topical use of dexpanthenol include increased fibroblast proliferation and accelerated re-epithelialization in wound healing. Furthermore, it acts as a topical protectant, moisturizer, and has demonstrated anti-inflammatory properties .
Folic acid, as it is biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by dihydrofolate reductase (DHFR). These folic acid congeners are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids, methylate tRNA, and generate and use formate. Using vitamin B12 as a cofactor, folic acid can normalize high homocysteine levels by remethylation of homocysteine to methionine via methionine synthetase.
Dosage
Infuvite Pediatric dosage
Oral solution: Colecalciferol (Vitamin D3) is recommended 5-10 mcg or 1-2ml (200-400 IU)/day or as directed by the physician.
Chewable tablet: Cholecalciferol (Vitamin D3) is recommended 100 IU (1 tablet) daily, or as directed by physician. Take the medicine with food or within 1 hour after a meal. Place the tablet in mouth swallow after chewing.
Injection:
- Treatment of Cholecalciferol deficiency: 40,000 lU/week for 7 weeks, followed by maintenance therapy (1400-2000 lU/day). Follow-up 25 (OH) D measurements should be made approximately 3 to 4 months after initiating maintenance therapy to confirm that the target level has been achieved.
- Prevention of Vitamin D deficiency: 20,000 lU/Month.
- Treatment of Vitamin D deficiency:12-18 years: 20,000 IU, once every 2 weeks for 6 weeks. Prevention of Vitamin D deficiency, 12-18 years: 20,000 IU, once every 6 weeks.
Usual Adult Dose for Pernicious Anemia
Initial dose: 1000 mcg intramuscularly or deep subcutaneous once a day for 6 to 7 daysIf clinical improvement and reticulocyte response is seen from the above dosing:
- 100 mcg every other day for 7 doses, then
- 100 mcg every 3 to 4 days for 2 to 3 weeks, then
- Maintenance dose: 100 to 1000 mcg monthly
Administer concomitant folic acid if needed. Chronic treatment should be done with an oral preparation in patients with normal intestinal absorption.
Usual Adult Dose for B12 Nutritional Deficiency: 25 to 2000 mcg orally daily
Usual Adult Dose for Schilling Test: 1000 mcg intramuscularly is the flushing dose
Usual Pediatric Dose for B12 Nutritional Deficiency: 0.5 to 3 mcg daily
Check with the doctor or pharmacist if you are unsure how to use Dexpanthenol.
The usual dosage is generally:
- Diaper rash: Apply a thin layer on the baby’s bottom at every diaper change.
- Nipples: Apply a thin layer on the nipples after each nursing session. Wash the nipples thoroughly before the next nursing session.
- Dry/cracked skin or light wounds and chafed skin: Apply to the dry areas and/or to the wound up to 3 times a day.
Supplement for women of child-bearing potential: 0.4 mg daily.
Folate-deficient megaloblastic anaemia: 5 mg daily for 4 mth, up to 15 mg daily in malabsorption states. Continued dosing at 5 mg every 1-7 days may be needed in chronic haemolytic states, depending on the diet and rate of haemolysis.
Prophylaxis of neural tube defect in pregnancy: 4 or 5 mg daily starting before pregnancy and continued through the 1st trimester.
Prophylaxis of megaloblastic anaemia in pregnancy: 0.2-0.5 mg daily.
May be taken with or without food.
Side Effects
Generally all nutritional supplements are considered to be safe and well tolerable. However, few side-effects can generally occur including hypercalcaemia syndrome or Calcium intoxication (depending on the severity and duration of hypercalcaemia), occasional acute symptoms include anorexia, headache, nausea, vomiting, abdominal pain or stomach ache and constipation with the administration of Colecaciferol.
Arthralgia (12%), Dizziness (12%), Headache (12%), Nasopharyngitis (12%), Anaphylaxis, Angioedema, Congestive heart failure, Peripheral vascular disease,Pulmonary edema, Diarrhea, Dyspepsia, Polycythemia vera, Sore throat, Nervousness, Rhinitis, Glossitis, Hypoesthesia
As with any medicine, use of Dexpanthenol may cause side effects in some users. Do not be alarmed by the list of side effects. You may not suffer from any of them. Discontinue use and refer to a doctor immediately in the event of: Allergic reaction and/or allergic skin reaction such as: atopic dermatitis, allergic dermatitis, pruritus, redness, rash, eczema, urticaria, local irritation or blistering. If a side effect occurs, worsens, or if you suffer from a side effect not mentioned in this leaflet, consult with the doctor.
GI disturbances, hypersensitivity reactions; bronchospasm.
Toxicity
Tocopherols are considered as non-toxic but if very high doses (approximately >2 g/kg/day) are administered, there are reports of hemorrhagic activity . Reproductive and developmental toxicity tests are negative . These negative results were also observed in the analysis of mutagenicity and carcinogenicity . The majority of these tests were animal feeding studies .
Prolonged skin contact may cause irritation.
Chronic or acute administration of excessive doses of cholecalciferol may lead to hypervitaminosis D, manifested by hypercalcemia and its sequelae . Early symptoms of hypercalcemia may include weakness, fatigue, somnolence, headache, anorexia, dry mouth, metallic taste, nausea, vomiting, vertigo, tinnitus, ataxia, and hypotonia . Later and possibly more serious manifestation include nephrocalcinosis, renal dysfunction, osteoporosis in adults, impaired growth in children, anemia, metastatic calcification, pancreatitis, generalized vascular calcification, and seizures .
Safety of doses in excess of 400 IU (10mcg) of vitamin D3 daily during pregnancy has not been established . Maternal hypercalcemia, possibly caused by excessive vitamin D intake during pregnancy, has been associated with hypercalcemia in neonates, which may lead to supravalvular aortic stenosis syndrome, the features of which may include retinopathy, mental or growth retardation, strabismus, and other effects . Hypercalcemia during pregnancy may also lead to suppression of parathyroid hormone release in the neonate, resulting in hypocalcemia, tetany, and seizures .
Vitamin D is deficient in maternal milk; therefore, breastfed infants may require supplementation. Use of excessive amounts of Vitamin D in nursing mothers may result in hypercalcemia in infants. Doses of Vitamin D3 in excess of 10 µg daily should not be administered daily to nursing women.
LD50 Oral (mouse): > 5,000 mg/kg .
General toxicity
Vitamin B12 is generally non-toxic, even at higher doses. Mild, transient diarrhea, polycythemia vera, peripheral vascular thrombosis, itching, transitory exanthema, a feeling of swelling of entire body, pulmonary edema and congestive heart failure in early treatment stages, anaphylactic shock and death have been observed after vitamin B12 administration .
Carcinogenesis and mutagenesis
Long term studies in animals examining the carcinogenic potential of any of the vitamin B12 formulations have not completed to date. There is no evidence from long-term use in patients with pernicious anemia that vitamin B12 has carcinogenic potential. Pernicious anemia is known to be associated with an increased incidence of stomach carcinoma, however, this malignancy has been attributed to the underlying cause of pernicious anemia and has not been found to be related to treatment with vitamin B12 .
Use in pregnancy
No adverse effects have been reported with ingestion of normal daily requirements during pregnancy .
A note on the use of the nasal spray in pregnancy
Although vitamin B12 is an essential vitamin and requirements are increased during pregnancy, it is currently unknown whether the nasal spray form can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. The nasal spray form should be given to a pregnant woman only if clearly needed, as it is considered a pregnancy category C drug in this form. Sufficient well-controlled studies have not been done to this date in pregnant women .
Use in lactation
Vitamin B12 has been found distributed into the milk of nursing women in concentrations similar to the maternal blood vitamin B12 concentrations. No adverse effects have been reported to date with intake of normal required doses during lactation .
Mouse LD50 : 9gm/kg (Intraperitoneal) Mouse: LD50 7gm/kg (Intravenous) Mouse: LD50 15gm/kg (Oral) Rabbit LD50 4gm/kg (Oral)
IPR-MUS LD50 85 mg/kg,IVN-GPG LD50 120 mg/kg, IVN-MUS LD50 239 mg/kg, IVN-RAT LD50 500 mg/kg, IVN-RBT LD50 410 mg/kg
Precaution
People with the following conditions should exercise caution when considering taking vitamin D supplements: High blood Calcium or Phosphorus level, Heart problems, Kidney disease.
Vitamin D must be taken with adequate amounts of both Calcium and Magnesium supplementation. When Calcium level is low (due to insufficient vitamin D and calcium intake), the body activates the parathyroid gland, which produces PTH (parathyroid hormone). This hormone kick starts vitamin D hormone production and assists removal of Calcium from the bones to be used in more important functions such as neutralizing body acidity.
Intensive treatment of B12-deficient megaloblastic anemia may cause hypokalemia and sudden death. Use with caution in patients with Leber optic nerve atrophy. Thrombocytosis may occur with treatment of severe vitamin B12 megaloblastic anemia
Treatment resistance may occur in patients with depressed haematopoiesis, alcoholism, deficiencies of other vitamins. Neonates.
Interaction
Cholecalciferol is known to interact with Carbamazepine, Dactinomycin, Diuretics, Fosphenytoin, Miconazole, Phenobarbital, Phenytoin, Primidone
Absorption reduced by antibiotics, aminosalicylic acid, anticonvulsants, biguanides, cholestyramine, cimetidine, colchicine, K salts, methyldopa.
Antiepileptics, oral contraceptives, anti-TB drugs, alcohol, aminopterin, methotrexate, pyrimethamine, trimethoprim and sulphonamides may result to decrease in serum folate contrations. Decreases serum phenytoin concentrations.
Volume of Distribution
When three particular doses alpha-tocopherol were administered to healthy male subjects, the apparent volumes of distribution (ml) observed were: (a) at a single administered dose of 125 mg, the Vd/f was 0.070 +/- 0.002, (b) at dose 250. mg, the Vd/f was 0.127 +/- 0.004, and (c) at dose 500 mg, the Vd/f was 0.232 +/- 0.010 .
Studies have determined that the mean central volume of distribution of administered cholecalciferol supplementation in a group of 49 kidney transplant patients was approximately 237 L .
Cobalamin is distributed to tissues and stored mainly in the liver and bone marrow .
Dexpanthenol is readily converted to pantothenic acid which is widely distributed into body tissues, mainly as coenzyme A. Highest concentrations are found in the liver, adrenal glands, heart, and kidneys.
Tetrahydrofolic acid derivatives are distributed to all body tissues but are stored primarily in the liver.
Elimination Route
When vitamin E is ingested, intestinal absorption plays a principal role in limiting its bioavailability . It is known that vitamin E is a fat-soluble vitamin that follows the intestinal absorption, hepatic metabolism, and cellular uptake processes of other lipophilic molecules and lipids . The intestinal absorption of vitamin E consequently requires the presence of lipid-rich foods .
In particular, stable alpha-tocopherol acetate undergoes hydrolysis by bile acid-dependant lipase in the pancreas or by an intestinal mucosal esterase . Subsequent absorption in the duodenum occurs by way of transfer from emulsion fat globules to water-soluble multi- and unilamellar vesicles and mixed micelles made up of phospholipids and bile acids . As the uptake of vitamin E into enterocytes is less efficient compared to other types of lipids, this could potentially explain the relatively low bioavailability of vitamin E . Alpha-tocopherol acetate itself is embedded in matrices where its hydrolysis and its uptake by intestinal cells are markedly less efficient than in mixed micelles . Subsequently, the intestinal cellular uptake of vitamin E from mixed micelles follows in principle two different pathways across enterocytes: (a) via passive diffusion, and (b) via receptor-mediated transport with various cellular transports like scavenger receptor class B type 1, Niemann-Pick C1-like protein, ATP-binding cassette (ABC) transporters ABCG5/ABCG8, or ABCA1, among others .
Vitamin E absorption from the intestinal lumen is dependent upon biliary and pancreatic secretions, micelle formation, uptake into enterocytes, and chylomicron secretion . Defects at any step can lead to impaired absorption. . Chylomicron secretion is required for vitamin E absorption and is a particularly important factor for efficient absorption. All of the various vitamin E forms show similar apparent efficiencies of intestinal absorption and subsequent secretion in chylomicrons . During chylomicron catabolism, some vitamin E is distributed to all the circulating lipoproteins .
Chylomicron remnants, containing newly absorbed vitamin E, are then taken up by the liver . Vitamin E is secreted from the liver in very low density lipoproteins (VLDLs). Plasma vitamin E concentrations depend upon the secretion of vitamin E from the liver, and only one form of vitamin E, alpha-tocopherol, is ever preferentially resecreted by the liver . The liver is consequently responsible for discriminating between tocopherols and the preferential plasma enrichment with alpha-tocopherol . In the liver, the alpha-tocopherol transfer protein (alpha-TTP) likely is in charge of the discriminatory function, where RRR- or d-alpha-tocopherol possesses the greatest affinity for alpha-TTP .
It is nevertheless believed that only a small amount of administered vitamin E is actually absorbed. In two individuals with gastric carcinoma and lymphatic leukemia, the respective fractional absorption in the lymphatics was only 21 and 29 percent of label from meals containing alpha-tocopherol and alpha-tocopheryl acetate, respectively .
Additionally, after feeding three separate single doses of 125 mg, 250 mg, and 500 mg to a group of healthy males, the observed plasma peak concentrations (ng/mL) were 1822 +/- 48.24, 1931.00 +/- 92.54, and 2188 +/- 147.61, respectively .
Systemic - approximately 50%
Cholecalciferol is readily absorbed from the small intestine if fat absorption is normal . Moreover, bile is necessary for absorption as well .
In particular, recent studies have determined aspects about the absorption of vitamin D, like the fact that a) the 25-hydroxyvitamin D metabolite of cholecalciferol is absorbed to a greater extent than the nonhydroxy form of cholecalciferol, b) the quantity of fat with which cholecalciferol is ingested does not appear to largely affect its bioavailability, and c) age does not apparently effect vitamin D cholecalciferol .
Vitamin B12 is quickly absorbed from intramuscular (IM) and subcutaneous (SC) sites of injection; with peak plasma concentrations achieved about 1 hour after IM injection .
Orally administered vitamin B12 binds to intrinsic factor (IF) during its transport through the stomach. The separation of Vitamin B12 and IF occurs in the terminal ileum when calcium is present, and vitamin B12 is then absorbed into the gastrointestinal mucosal cells. It is then transported by transcobalamin binding proteins . Passive diffusion through the intestinal wall can occur, however, high doses of vitamin B12 are required in this case (i.e. >1 mg). After the administration of oral doses less than 3 mcg, peak plasma concentrations are not reached for 8 to 12 hours, because the vitamin is temporarily retained in the wall of the lower ileum .
Dexpanthenol is soluble in water and alcohol, although insoluble in fats and oil based substances. With the appropriate vehicle, Dexpanthenol is easily penetrated into the skin. Rate of penetration and absorption is reduced when Dexpanthenol is administered as an oil/water formula.
Folic acid is absorbed rapidly from the small intestine, primarily from the proximal portion. Naturally occurring conjugated folates are reduced enzymatically to folic acid in the gastrointestinal tract prior to absorption. Folic acid appears in the plasma approximately 15 to 30 minutes after an oral dose; peak levels are generally reached within 1 hour.
Half Life
The apparent half-life of RRR- or d-alpha-tocopherol in normal subjects is approximately 48 hours .
At this time, there have been resources that document the half-life of cholecalciferol as being about 50 days while other sources have noted that the half-life of calcitriol (1,25-dihydroxyvitamin D3) is approximately 15 hours while that of calcidiol (25-hydroxyvitamin D3) is about 15 days .
Moreover, it appears that the half-lives of any particular administration of vitamin d can vary due to variations in vitamin d binding protein concentrations and genotype in particular individuals .
Approximately 6 days (400 days in the liver) .
Half life have not been reported
Clearance
When three specific doses of 125 mg, 250 mg, and 500 mg of alpha-tocopherol were administered as single doses to a group of healthy males, the resultant times of clearance observed, respectively, were: 0.017 +/- 0.015 l/h, 0.011 +/- 0.001 l/h, and 0.019 +/- 0.001 l/h .
Studies have determined that the mean clearance value of administered cholecalciferol supplementation in a group of 49 kidney transplant patients was approximately 2.5 L/day .
During vitamin loading, the kidney accumulates large amounts of unbound vitamin B12. This drug is cleared partially by the kidney, however, multiligand receptor megalin promotes the reuptake and reabsorption of vitamin B12 into the body , .
Elimination Route
The major route of excretion of ingested vitamin E is fecal elimination because of its relatively low intestinal absorption . Excess alpha-tocopherol, as well as forms of vitamin E not preferentially used, are probably excreted unchanged in bile .
It has been observed that administered cholecalciferol and its metabolites are excreted primarily in the bile and feces .
This drug is partially excreted in the urine . According to a clinical study, approximately 3-8 mcg of vitamin B12 is secreted into the gastrointestinal tract daily via the bile. In patients with adequate levels of intrinsic factor, all except approximately 1 mcg is reabsorbed. When vitamin B12 is administered in higher doses that saturate the binding capacity of plasma proteins and the liver, the unbound vitamin B12 is eliminated rapidly in the urine. The body storage of vitamin B12 is dose-dependent .
Milk of nursing mothers receiving a normal diet contains about 2 ug of pantothenic acid per mL. About 70% of an oral dose of pantothenic acid is excreted unchanged in urine and about 30% in feces.
After a single oral dose of 100 mcg of folic acid in a limited number of normal adults, only a trace amount of the drug appeared in the urine. An oral dose of 5 mg in 1 study and a dose of 40 mcg/kg of body weight in another study resulted in approximately 50% of the dose appearing in the urine. After a single oral dose of 15 mg, up to 90% of the dose was recovered in the urine. A majority of the metabolic products appeared in the urine after 6 hours; excretion was generally complete within 24 hours. Small amounts of orally administered folic acid have also been recovered in the feces. Folic acid is also excreted in the milk of lactating mothers.
Pregnancy & Breastfeeding use
There is no evidence to suggest that vitamin D is teratogenic in humans even at very high doses. Colecalciferol should be used during pregnancy only if the benefits outweigh the potential risk to the fetus.
It should be assumed that exogenous Colecalciferol passes into the breast milk. In view of the potential for hypercalcaemia in the mother and for adverse reactions from Colecalciferol in nursing infants, mothers may breastfeed while taking Colecalciferol, provided that the serum Calcium levels of the mother and infant are monitored.
Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).
Lactation: Drug distributed in milk.
Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).
Contraindication
Colecalciferol is contraindicated in all diseases associated with hypercalcaemia. It is also contraindicated in patients with known hypersensitivity to Colecalciferol (or medicines of the same class) and any of the constituent excipients. Colecalciferol is contraindicated if there is evidence of vitamin D toxicity.
Leber's disease, tobacco amblyopia.
Undiagnosed megaloblastic anaemia; pernicious, aplastic or normocytic anaemias.
Acute Overdose
Symptoms: anorexia, headache, vomiting, constipation, dystrophy (weakness, loss of weight), sensory disturbances, possibly fever with thirst, polyuria, dehydration, apathy, arrested growth and urinary tract infections. Hypercalcaemia ensues, with metastatic calcification of the renal cortex, myocardium, lungs and pancreas.
Treatment: Immediate gastric lavage or induction of vomiting to prevent further absorption. Liquid paraffin should be administered to promote faecal excretion. Repeated serum calcium determinations are advisable. If elevated calcium levels persist in the serum, phosphates and corticosteroids may be administered and measures instituted to bring about adequate diuresis.
Storage Condition
Do not store above 30 degree Celsius. Keep away from light and out of the reach of children.
Store at 15-30° C.
Innovators Monograph
You find simplified version here Infuvite Pediatric