Ketovite Liquid
Ketovite Liquid Uses, Dosage, Side Effects, Food Interaction and all others data.
Vitamin B12 (cyanocobalamin) is required for the maintenance of normal erthropoiesis, nucleprotein and myelin synthesis, cell reproduction and normal growth; Coenzyme; metabolic functions include protein synthesis and carbohydrate metabolism. Plays role in cell replication and hematopoiesis.
General effects
Cyanocobalamin corrects vitamin B12 deficiency and improves the symptoms and laboratory abnormalities associated with pernicious anemia (megaloblastic indices, gastrointestinal lesions, and neurologic damage). This drug aids in growth, cell reproduction, hematopoiesis, nucleoprotein, and myelin synthesis. It also plays an important role in fat metabolism, carbohydrate metabolism, as well as protein synthesis. Cells that undergo rapid division (for example, epithelial cells, bone marrow, and myeloid cells) have a high demand for vitamin B12 .
Parenteral cyanocobalamin effects
Ergocalciferol is an inactivated vitamin D analog. It is synthesized by some plants in the presence of UVB light. The production of ergocalciferol was prompted by the identification of dietary deficiency, more specifically vitamin D, as the main causative factor for the development of rickets. Ergocalciferol was isolated for the first time from yeast in 1931 and its structure was elucidated in 1932.
Ergocalciferol is considered the first vitamin D analog and is differentiated from cholecalciferol by the presence of a double bond between C22 and C23 and the presence of a methyl group at C24. These modifications reduce the affinity of ergocalciferol for the vitamin D binding protein resulting in faster clearance, limits its activation, and alters its catabolism.
The first approved product containing ergocalciferol under the FDA records was developed by US Pharm Holdings and was FDA approved in 1941.
Vitamin A plays an essential role in the function of retina and is essential for growh and differentiation of epithelial tissue.
Vitamin A is effective for the treatment of Vitamin A deficiency. Vitamin A refers to a group of fat-soluble substances that are structurally related to and possess the biological activity of the parent substance of the group called all-trans retinol or retinol. Vitamin A plays vital roles in vision, epithelial differentiation, growth, reproduction, pattern formation during embryogenesis, bone development, hematopoiesis and brain development. It is also important for the maintenance of the proper functioning of the immune system.
Trade Name | Ketovite Liquid |
Generic | cyanocobalamin + vitamin a + ergocalciferol + choline chloride |
Type | |
Therapeutic Class | |
Manufacturer | Essential Pharmaceuticals Ltd |
Available Country | United Kingdom |
Last Updated: | September 19, 2023 at 7:00 am |
Uses
This preparation is used for Pernicious anemia,Vitamin B12 deficiency due to low intake from food,Thyrotoxicosis, Hemorrhage, Malignancy, Liver or kidney disease,Gastric bypass surgery, Total or partial gastrectomy, Gluten enteropathy or sprue, Folic acid deficiency, Macrocytic anaemia
Ergocalciferol is a vitamin found in many supplement products.
Ergocalciferol is indicated for the treatment of hypoparathyroidism, refractory rickets, and familial hypophosphatemia.
Hypoparathyroidism is the result of inadequate parathyroid hormone production that occurs due to the presence of damage or removal of the parathyroid glands. This condition produces decreased calcium and increased phosphorus levels.
Rickets is a condition produced due to a deficiency in vitamin D, calcium or phosphorus. However, this condition can also be related to renal diseases. It is characterized to present weak or soft bones.
Familial hypophosphatemia is characterized by the impaired transport of phosphate and an altered vitamin D metabolism in the kidneys. The presence of this condition can derive in the presence of osteomalacia, bone softening and rickets.
Effective for:
- Vitamin A deficiency. Taking vitamin A by mouth is effective for preventing and treating symptoms of vitamin A deficiency. Vitamin A deficiency can occur in people with protein deficiency, diabetes, over-active thyroid, fever, liver disease, cystic fibrosis, or an inherited disorder called abetalipoproteinemia.
Possibly Effective for:
- Breast cancer. Premenopausal women with a family history of breast cancer who consume high levels of vitamin A in their diet seem to have reduced risk of developing breast cancer. It is not known if taking vitamin A supplements has the same benefit.
- Cataracts. Research suggests that high intake of vitamin A in the diet is linked to a lower risk of developing cataracts.
- Diarrhea related to HIV. Taking vitamin A along with conventional medicines seems to decrease the risk of death from diarrhea in HIV-positive children with vitamin A deficiency.
- Malaria. Taking vitamin A by mouth seems to decrease malaria symptoms in children less than 3 years-old living in areas where malaria is common.
- Measles. Taking vitamin A by mouth seems to reduce the risk of measles complications or death in children with measles and vitamin A deficiency.
- Precancerous lesions in the mouth (oral leukoplakia). Research suggests that taking vitamin A can help treat precancerous lesions in the mouth.
- Recovery from laser eye surgery (photoreactive keratectomy). Taking vitamin A by mouth along with vitamin E seems to improve healing after laser eye surgery.
- Complications after pregnancy. Taking vitamin A seems to reduce the risk of diarrhea and fever after pregnancy in malnourished women.
- Complications during pregnancy. Taking vitamin A by mouth seems to reduce the risk of death and night blindness during pregnancy in malnourished women.
- Eye disease affecting the retina (retinitis pigmentosa). Research suggests that taking vitamin A can slow the progression of an eye disease that causes damage to the retina.
Ketovite Liquid is also used to associated treatment for these conditions: Anemia, Anemia, Pernicious, Combined Vitamin B1 and B12 deficiency, Convalescence, Diabetic Neuropathies, Folate deficiency, Iron Deficiency Anemia (IDA), Neuritis, Vitamin B1 deficiency, Vitamin B12 Deficiency, Vitamin B12 concentration, Vitamin B6 Deficiency, Vitamin Deficiency, Nutritional supplementation, Vitamin supplementationDeficiency, Vitamin A, Deficiency, Vitamin D, Hypoparathyroidism, Hypophosphatemia, Familial, Vitamin D Resistant Rickets, Dietary supplementationDeficiency, Vitamin A, Deficiency, Vitamin D, Degenerative Retinal Disorders, Disorder of the Epithelium, Disorder of the Mesoderm, Inner ear disorder, Vitamin Deficiency, Vitamin E Deficiency, Nutritional supplementation
How Ketovite Liquid works
Vitamin B12 serves as a cofactor for methionine synthase and L-methylmalonyl-CoA mutase enzymes. Methionine synthase is essential for the synthesis of purines and pyrimidines that form DNA. L-methylmalonyl-CoA mutase converts L-methylmalonyl-CoA to succinyl-CoA in the degradation of propionate , an important reaction required for both fat and protein metabolism. It is a lack of vitamin B12 cofactor in the above reaction and the resulting accumulation of methylmalonyl CoA that is believed to be responsible for the neurological manifestations of B12 deficiency . Succinyl-CoA is also necessary for the synthesis of hemoglobin .
In tissues, vitamin B12 is required for the synthesis of methionine from homocysteine. Methionine is required for the formation of S-adenosylmethionine, a methyl donor for nearly 100 substrates, comprised of DNA, RNA, hormones, proteins, as well as lipids . Without vitamin B12, tetrahydrofolate cannot be regenerated from 5-methyltetrahydrofolate, and this can lead to functional folate deficiency , . This reaction is dependent on methylcobalamin (vitamin B12) as a co-factor and is also dependent on folate, in which the methyl group of methyltetrahydrofolate is transferred to homocysteine to form methionine and tetrahydrofolate. Vitamin B12 incorporates into circulating folic acid into growing red blood cells; retaining the folate in these cells . A deficiency of vitamin B12 and the interruption of this reaction leads to the development of megaloblastic anemia.
For its activity, ergocalciferol is required to be transformed to its major active circulating hydroxylated metabolite and transported to the target organs in order to bind to its target, the vitamin D receptor.
The activation of the vitamin D receptor is part of the vitamin D endocrine system and it is described by the production of a change in the transcription rates of the vitamin D receptor target genes. The target genes in the DNA affected by the presence of ergocalciferol are called vitamin D response elements which are dependent on co-modulators.
The vitamin D receptor is a transcription factor and member of the steroid hormone nuclear receptor family. It presents a DNA binding domain (VDRE) that, when activated, recruits coregulatory complexes to regulate the genomic activity.
Additionally, ergocalciferol presents nongenomic effects such as the stimulation of intestinal calcium transport via transcaltachia.
Vision:Vitamin A (all-trans retinol) is converted in the retina to the 11-cis-isomer of retinaldehyde or 11-cis-retinal. 11-cis-retinal functions in the retina in the transduction of light into the neural signals necessary for vision. 11-cis-retinal, while attached to opsin in rhodopsin is isomerized to all-trans-retinal by light. This is the event that triggers the nerve impulse to the brain which allows for the perception of light. All-trans-retinal is then released from opsin and reduced to all-trans-retinol. All-trans-retinol is isomerized to 11-cis-retinol in the dark, and then oxidized to 11-cis-retinal. 11-cis-retinal recombines with opsin to re-form rhodopsin. Night blindness or defective vision at low illumination results from a failure to re-synthesize 11-cis retinal rapidly.
Epithelial differentiation: The role of Vitamin A in epithelial differentiation, as well as in other physiological processes, involves the binding of Vitamin A to two families of nuclear retinoid receptors (retinoic acid receptors, RARs; and retinoid-X receptors, RXRs). These receptors function as ligand-activated transcription factors that modulate gene transcription. When there is not enough Vitamin A to bind these receptors, natural cell differentiation and growth are interrupted.
Dosage
Ketovite Liquid dosage
Usual Adult Dose for Pernicious Anemia
Initial dose: 1000 mcg intramuscularly or deep subcutaneous once a day for 6 to 7 daysIf clinical improvement and reticulocyte response is seen from the above dosing:
- 100 mcg every other day for 7 doses, then
- 100 mcg every 3 to 4 days for 2 to 3 weeks, then
- Maintenance dose: 100 to 1000 mcg monthly
Administer concomitant folic acid if needed. Chronic treatment should be done with an oral preparation in patients with normal intestinal absorption.
Usual Adult Dose for B12 Nutritional Deficiency: 25 to 2000 mcg orally daily
Usual Adult Dose for Schilling Test: 1000 mcg intramuscularly is the flushing dose
Usual Pediatric Dose for B12 Nutritional Deficiency: 0.5 to 3 mcg daily
Vitamin A deficiency For severe deficiency with corneal changes: 500,000 unit/day for 3 days, followed by 50,000 unit/day for 2 wk and then 10,000-20,000 unit/day for 2 mth as follow-up therapy.
For cases without corneal changes: 10,000-25,000 unit/day until clinical improvement occurs (usually 1 -2 wk).
Side Effects
Arthralgia (12%), Dizziness (12%), Headache (12%), Nasopharyngitis (12%), Anaphylaxis, Angioedema, Congestive heart failure, Peripheral vascular disease,Pulmonary edema, Diarrhea, Dyspepsia, Polycythemia vera, Sore throat, Nervousness, Rhinitis, Glossitis, Hypoesthesia
Hypervitaminosis A characterised by fatigue, irritability, anorexia, weight loss, vomiting and other Gl disturbances, low-grade fever, hepatosplenomegaly, skin changes, alopoecia, dry hair, cracking and bleeding lips, SC swelling, nocturia, pains in bones and joints.
Toxicity
LD50 Oral (mouse): > 5,000 mg/kg .
General toxicity
Vitamin B12 is generally non-toxic, even at higher doses. Mild, transient diarrhea, polycythemia vera, peripheral vascular thrombosis, itching, transitory exanthema, a feeling of swelling of entire body, pulmonary edema and congestive heart failure in early treatment stages, anaphylactic shock and death have been observed after vitamin B12 administration .
Carcinogenesis and mutagenesis
Long term studies in animals examining the carcinogenic potential of any of the vitamin B12 formulations have not completed to date. There is no evidence from long-term use in patients with pernicious anemia that vitamin B12 has carcinogenic potential. Pernicious anemia is known to be associated with an increased incidence of stomach carcinoma, however, this malignancy has been attributed to the underlying cause of pernicious anemia and has not been found to be related to treatment with vitamin B12 .
Use in pregnancy
No adverse effects have been reported with ingestion of normal daily requirements during pregnancy .
A note on the use of the nasal spray in pregnancy
Although vitamin B12 is an essential vitamin and requirements are increased during pregnancy, it is currently unknown whether the nasal spray form can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. The nasal spray form should be given to a pregnant woman only if clearly needed, as it is considered a pregnancy category C drug in this form. Sufficient well-controlled studies have not been done to this date in pregnant women .
Use in lactation
Vitamin B12 has been found distributed into the milk of nursing women in concentrations similar to the maternal blood vitamin B12 concentrations. No adverse effects have been reported to date with intake of normal required doses during lactation .
The reported LD50 for orally administered ergocalciferol in the rat is of 10 mg/kg. Overdosage with this agent is reported to produce hypervitaminosis characterized by hypercalcemia, renal impairment, calcification of soft tissues, a decline in the rate of linear growth and increase in bone mineralization.
Once an overdose state is registered, immediate withdrawal of vitamin D is required along with a calcium diet, generous intake of fluids and symptomatic treatment. The administration of loop diuretics is an option to increase renal calcium excretion. On the other hand, dialysis and administration of citrates, sulfates, phosphates, corticosteroids, EDTA and mithramycin are recommended.
There haven't been long term studies analyzing the carcinogenic and mutagenic potential of ergocalciferol or its effects in fertility.
Acute toxicity to vitamin A can occur when adults or children ingest >100x or >20x the RDA, respectively, over a period of hours or a few days. The RDA for vitamin A differs depending on age and sex and can range from 300 - 900 μg retinol activity equivalents (RAE) per day. Symptoms of acute systemic toxicity generally include mucocutaneous involvement (e.g. xerosis, cheilitis, skin peeling) and may involve mental status changes. Children are typically more susceptible to acute vitamin A toxicity - daily intakes of as little as 1500 IU/kg have been observed to result in toxicity.
Chronic vitamin A toxicity can develop following the long-term ingestion of high vitamin A doses. While there is a wide variation in the lowest toxic vitamin A dose, the ingestion of >25 000 IU daily for 6 years or 100,000 IU daily for 6 months is considered to be toxic. Chronic vitamin A toxicity can affect many organ systems and can lead to the development of osteoporosis and CNS effects (e.g. headaches).
Precaution
Intensive treatment of B12-deficient megaloblastic anemia may cause hypokalemia and sudden death. Use with caution in patients with Leber optic nerve atrophy. Thrombocytosis may occur with treatment of severe vitamin B12 megaloblastic anemia
Cholestatic jaundice; fat-malabsorption conditions. Monitor patients closely for toxicity. Liver impairment and children.
Interaction
Absorption reduced by antibiotics, aminosalicylic acid, anticonvulsants, biguanides, cholestyramine, cimetidine, colchicine, K salts, methyldopa.
Decreased absorption with neomycin. Increased risk of hypervitaminosis A with synthetic retinoids eg, acitretin, isotretinoin and tretinoin. Increased risk of toxicity when used with alcohol.
Volume of Distribution
Cobalamin is distributed to tissues and stored mainly in the liver and bone marrow .
The amount of circulating ergocalciferol is very limited as this compound is rapidly stored in fat tissue such as adipose tissue, liver and muscle. This is very obvious in reports that indicate that circulating ergocalciferol is significantly reduced in obese patients.
Elimination Route
Vitamin B12 is quickly absorbed from intramuscular (IM) and subcutaneous (SC) sites of injection; with peak plasma concentrations achieved about 1 hour after IM injection .
Orally administered vitamin B12 binds to intrinsic factor (IF) during its transport through the stomach. The separation of Vitamin B12 and IF occurs in the terminal ileum when calcium is present, and vitamin B12 is then absorbed into the gastrointestinal mucosal cells. It is then transported by transcobalamin binding proteins . Passive diffusion through the intestinal wall can occur, however, high doses of vitamin B12 are required in this case (i.e. >1 mg). After the administration of oral doses less than 3 mcg, peak plasma concentrations are not reached for 8 to 12 hours, because the vitamin is temporarily retained in the wall of the lower ileum .
Ergocalciferol is absorbed in the intestine and carried to the liver in chylomicrons. Its intestinal absorption does not present limitations unless the presence of conditions related to fat malabsorption. However, for absorption to take place, the presence of bile is required.
Readily absorbed from the normal gastrointestinal tract
Half Life
Approximately 6 days (400 days in the liver) .
Ergocalciferol can be found circulation for 1-2 days. This quick turnover is presented due to hepatic conversion and uptake by fat and muscle cells where it is transformed to the active form.
1.9 hours
Clearance
During vitamin loading, the kidney accumulates large amounts of unbound vitamin B12. This drug is cleared partially by the kidney, however, multiligand receptor megalin promotes the reuptake and reabsorption of vitamin B12 into the body , .
There are no formal reports regarding the clearance rate of ergocalciferol. Due to the structural similarity, it is recommended to consult this parameter with cholecalciferol. On the other hand, the proposed renal clearance of calcitriol is of 31 ml/min.
Elimination Route
This drug is partially excreted in the urine . According to a clinical study, approximately 3-8 mcg of vitamin B12 is secreted into the gastrointestinal tract daily via the bile. In patients with adequate levels of intrinsic factor, all except approximately 1 mcg is reabsorbed. When vitamin B12 is administered in higher doses that saturate the binding capacity of plasma proteins and the liver, the unbound vitamin B12 is eliminated rapidly in the urine. The body storage of vitamin B12 is dose-dependent .
The active form of ergocalciferol, calcitrol, cannot be maintained for long periods in storage tissue mainly in periods of dietary or UVB deprivation. Therefore, ergocalciferol and its metabolites are excreted via the bile with a minor contribution of renal elimination. This major fecal elimination is explained due to the cubilin-megalin receptor system-mediated renal reuptake of vitamin D metabolites bound to vitamin D binding protein.
Pregnancy & Breastfeeding use
Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).
Lactation: Drug distributed in milk.
Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).
Contraindication
Leber's disease, tobacco amblyopia.
Hypervitaminosis A; pregnancy (dose exceeding RDA).
Innovators Monograph
You find simplified version here Ketovite Liquid