Kofron Dmr Uses, Dosage, Side Effects and more

Bromhexine is an oral mucolytic agent with a low level of associated toxicity. It acts on the mucus at the formative stages in the glands, within the mucus-secreting cells. Bromhexine disrupts the structure of acid mucopolysaccharide fibres in mucoid sputum and produces less viscous mucus, which is easier to expectorate

Bromhexine thins airway secretions, improving breathing and discomfort associated with thick mucus in airways associated with a variety of respiratory conditions.

Chlorpheniramine is an alkylamine antihistamine. It is one of the most potent H1 blocking agents and is generally effective in relatively low doses. Chlorpheniramine is not so prone to produce drowsiness, readily absorbed from the gastro-intestinal tract, metabolised in the liver and excreted usually mainly as metabolised in the urine.

In allergic reactions an allergen interacts with and cross-links surface IgE antibodies on mast cells and basophils. Once the mast cell-antibody-antigen complex is formed, a complex series of events occurs that eventually leads to cell-degranulation and the release of histamine (and other chemical mediators) from the mast cell or basophil. Once released, histamine can react with local or widespread tissues through histamine receptors. Histamine, acting on H1-receptors, produces pruritis, vasodilatation, hypotension, flushing, headache, tachycardia, and bronchoconstriction. Histamine also increases vascular permeability and potentiates pain. Chlorpheniramine, is a histamine H1 antagonist (or more correctly, an inverse histamine agonist) of the alkylamine class. It competes with histamine for the normal H1-receptor sites on effector cells of the gastrointestinal tract, blood vessels and respiratory tract. It provides effective, temporary relief of sneezing, watery and itchy eyes, and runny nose due to hay fever and other upper respiratory allergies.

Dextromethorphan suppresses the cough reflex by a direct action on the cough center in the medulla of the brain. Dextromethorphan shows high affinity binding to several regions of the brain, including the medullary cough center. This compound is an NMDA receptor antagonist and acts as a non-competitive channel blocker. It is one of the widely used antitussives, and is also used to study the involvement of glutamate receptors in neurotoxicity.

Dextromethorphan is an opioid-like molecule indicated in combination with other medication in the treatment of coughs and pseudobulbar affect. It has a moderate therapeutic window, as intoxication can occur at higher doses. Dextromethorphan has a moderate duration of action. Patients should be counselled regarding the risk of intoxication.

Guaifenesin possesses a storied history, having been originally formally approved by the US FDA in 1952 and continues to be one of very few - if not perhaps the only drug that is readily available and used as an expectorant . Since that time the agent has been a combination component of various prescription and non-prescription over-the-counter cough and cold products and is currently a widely available over-the-counter generic medication . Although it is principally believed that guaifenesin elicits an action to facilitate productive cough to manage chest congestion , it is not known whether the agent can reliably mitigate coughing.

Regardless, on March 1, 2007, the FDA received a petition asking the FDA to notify the public that some antitussives, expectorants, decongestants, antihistamines, and cough/cold combinations are not known to be safe and effective in children under the age of 6 years . After the negotiation between FDA and major manufacturers, a voluntary transition of labels for not using guaifenesin in children under the age of 4 years was endorsed by FDA in 2008 .

Furthermore, there has also been contemporary research to suggest that guaifenesin possesses and is capable of demonstrating anticonvulsant and muscle relaxant effects to some degree possibly by acting as an NMDA receptor antagonist .

Pseudoephedrine is structurally related to ephedrine but exerts a weaker effect on the sympathetic nervous system. Both drugs naturally occur in in ephedra plant which have a history of use in traditional Eastern medicine and were first researched in the west in 1889. The decongestant effect of pseudoephedrine was described in dogs in 1927.

Pseudoephedrine causes vasoconstriction which leads to a decongestant effect. It has a short duration of action unless formulated as an extended release product. Patients should be counselled regarding the risk of central nervous system stimulation.

Trade Name Kofron Dmr
Generic Bromhexine + Chlorpheniramine + Dextromethorphan + Guaifenesin + Pseudoephedrine
Type Tablet
Therapeutic Class
Manufacturer Agron Remedies
Available Country India
Last Updated: January 7, 2025 at 1:49 am

Uses

Bromhexineis used for the treatment of respiratory disorders associated with productive cough. These include; tracheobronchitis, bronchitis with emphysema, bronchiectasis, bronchitis with bronchospasm, chronic inflammatory pulmonary conditions and pneumoconiosis.

Indicated mainly in allergic conditions including urticaria, sensitivity reactions, angioneurotic oedema, seasonal hay fever, vasomotor rhinitis, cough, common cold, motion sickness.

Dextromethorphan is used for Chronic dry cough or unproductive cough; Acute dry cough which is interfering with normal function or sleep.

Guaifenesin is an expectorant commonly found in OTC products for the symptomatic relief from congested chests and coughs associated with cold, bronchitis, and/or other breathing illnesses.

Guaifenesin is an expectorant that is indicated for providing temporary symptomatic relief from congested chests and coughs which may be due to a cold, bronchitis, and/or other breathing illnesses .

Pseudoephedrine is an alpha and beta adrenergic agonist used to treat nasal and sinus congestion, as well as allergic rhinitis.

Pseudoephedrine is a sympathomimetic amine used for its decongestant activity.

Kofron Dmr is also used to associated treatment for these conditions: Bronchiectasis, Common Cold, Cough, Cough caused by Common Cold, Nasal Congestion, Whooping Cough, Airway secretion clearance therapyAllergic Contact Dermatitis, Allergic Reaction, Allergic Rhinitis (AR), Allergic cough, Allergies, Allergies caused by Serum, Allergy to House Dust, Allergy to vaccine, Angioneurotic Edema, Asthma, Bronchial Asthma, Bronchitis, Common Cold, Conjunctival congestion, Conjunctivitis, Conjunctivitis allergic, Cough, Cough caused by Common Cold, Coughing caused by Flu caused by Influenza, Drug Allergy, Eye allergy, Fever, Flu caused by Influenza, Food Allergy, Headache, Headache caused by Allergies, Itching of the nose, Itching of the throat, Migraine, Nasal Congestion, Nasal Congestion caused by Common Cold, Pollen Allergy, Productive cough, Pruritus, Rash, Rhinorrhoea, Seasonal Allergic Conjunctivitis, Sinus Congestion, Sinusitis, Sneezing, Transfusion Reactions, Upper Respiratory Tract Infection, Upper respiratory tract hypersensitivity reaction, site unspecified, Urticaria, Vasomotor Rhinitis, Acute Rhinitis, Allergic purpura, Conjunctival hyperemia, Dry cough, Excess mucus or phlegm, Itchy throat, Mild bacterial upper respiratory tract infections, Ocular hyperemia, Throat inflammation, Upper airway congestion, Upper respiratory symptoms, Watery eyes, Watery itchy eyes, Airway secretion clearance therapyAllergic cough, Common Cold, Common Cold/Flu, Cough, Cough caused by Common Cold, Coughing caused by Allergies, Coughing caused by Bronchitis, Coughing caused by Flu caused by Influenza, Fever, Flu caused by Influenza, Headache, Irritative cough, Itching of the nose, Itching of the throat, Nasal Congestion, Pseudobulbar affect, Rhinorrhoea, Sneezing, Upper respiratory symptoms, Watery itchy eyes, Airway secretion clearance therapy, Bronchodilation, Oropharyngeal antisepsisAllergic Reaction, Asthma, Asthma, Allergic, Bronchial Asthma, Bronchitis, Bronchospasm, Chronic Bronchitis, Chronic Obstructive Respiratory Diseases, Common Cold, Cough, Cough caused by Common Cold, Coughing caused by Allergies, Coughing caused by Flu caused by Influenza, Drug Allergy, Emphysema, Fever, Flu caused by Influenza, Food Allergy, Headache, House dust allergy, Irritative cough, Laryngitis, Nasal Congestion, Nasal Congestion caused by Common Cold, Phlegm, Pollen Allergy, Productive cough, Rash, Rhinorrhoea, Sneezing, Sore Throat, Tracheitis, Urticaria, Whooping Cough, Acute Rhinitis, Chest congestion, Chills occurring with fever, Dry cough, Excess mucus or phlegm, Mild to moderate pain, Minor aches and pains, Airway secretion clearance therapy, ExpectorantAllergic Rhinitis (AR), Allergies, Common Cold, Common Cold Associated With Cough, Common Cold/Flu, Cough, Cough caused by Common Cold, Eye allergy, Fever, Flu caused by Influenza, Headache, Irritative cough, Nasal Allergies, Nasal Congestion, Nasal Congestion caused by Common Cold, Pain, Perennial Allergy, Priapism, Respiratory Allergy, Rhinorrhoea, Seasonal Allergic Rhinitis, Seasonal Allergies, Sinus Congestion, Sinusitis, Sneezing, Sore Throat, Symptoms of Acute Bronchitis Accompanied by Coughing, Throat irritation, Upper Respiratory Tract Infection, Upper respiratory tract congestion, Upper respiratory tract signs and symptoms, Dry cough, Minor aches and pains, Sinus pain, Watery itchy eyes, Airway secretion clearance therapy

How Kofron Dmr works

Inflammation of the airways, increased mucus secretion, and altered mucociliary clearance are the hallmarks of various diseases of the respiratory tract. Mucus clearance is necessary for lung health; bromhexine aids in mucus clearance by reducing the viscosity of mucus and activating the ciliary epithelium, allowing secretions to be expelled from the respiratory tract.

Recent have studies have demonstrated that bromhexine inhibits the transmembrane serine protease 2 receptor (TMPRSS2) in humans. Activation of TMPRSS2 plays an important role in viral respiratory diseases such as influenza A and Middle East Respiratory Syndrome (MERS). Inhibition of receptor activation and viral entry by bromhexine may be effective in preventing or treating various respiratory illnesses, including COVID-19. In vitro studies have suggested the action of ambroxol (a metabolite of bromhexine) on the angiogensin-converting enzyme receptor 2 (ACE2), prevents entry of the viral envelope-anchored spike glycoprotein of SARS-Cov-2 into alveolar cells or increases the secretion of surfactant, preventing viral entry.

Chlorpheniramine binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine.

Dextromethorphan is an agonist of NMDA and sigma-1 receptors. It is also an antagonist of α3/β4 nicotinic receptors.[A10589] However, the mechanism by which dextromethorphan's receptor agonism and antagonism translates to a clinical effect is not well understood.

Although the exact mechanism of action of guaifenesin may not yet be formally or totally elucidated, it is believed that expectorants like guaifenesin function by increasing mucus secretion . Moreover, it is also further proposed that such expectorants may also act as an irritant to gastric vagal receptors, and recruit efferent parasympathetic reflexes that can elicit glandular exocytosis that is comprised of a less viscous mucus mixture . Subsequently, these actions may provoke coughing that can ultimately flush difficult to access, congealed mucopurulent material from obstructed small airways to facilitate a temporary improvement for the individual .

Consequently, while it is generally proposed that guaifenesin functions as an expectorant by helping to loosen phlegm (mucus) and thin bronchial secretions to rid the bronchial passageways of bothersome mucus and make coughs more productive, there has also been research to suggest that guaifenesin possesses and is capable of demonstrating anticonvulsant and muscle relaxant effects to some degree possibly by acting as an NMDA receptor antagonist .

Pseudoephedrine acts mainly as an agonist of alpha adrenergic receptors and less strongly as an agonist of beta adrenergic receptors.[A10896] This agonism of adrenergic receptors produces vasoconstriction which is used as a decongestant and as a treatment of priapism. Pseudoephedrine is also an inhibitor of norepinephrine, dopamine, and serotonin transporters.

The sympathomimetic effects of pseudoephedrine include an increase in mean arterial pressure, heart rate, and chronotropic response of the right atria. Pseudoephedrine is also a partial agonist of the anococcygeal muscle. Pseudoephedrine also inhibits NF-kappa-B, NFAT, and AP-1.

Dosage

Kofron Dmr dosage

BromhexineTablet:

Adults and children over 10 years: 8-16 mg 3 times daily. Children 5-10 years: 4 mg 3 times daily.

BromhexineSyrup:

Adults: The recommended daily dose is 2 to 4 teaspoonful 3 times. Initially 4 teaspoonful 3 times daily and then as required.

Children: Suggested dosage for children under 2 years is 1/4 teaspoonful 3 times daily, for 2-5 years 1/2 teaspoonful 3 times daily and for children aged 5-10 years 1 teaspoonful 3 times daily.

Adults: 4 mg 3-4 times daily.

Children:

Adults and Children over 12 years: 15 to 30 mg three to four times per day. However, 60 mg doses up to four times per day have been used without increased side effects.

Children between 6 and 12 years: 5-15 mg up to four times per day.

Children between 2 and 6 years: 2.5-5 mg up to four times per day.

Side Effects

Gastrointestinal side-effects may occur occasionally with Bromhexine and a transient rise in serum aminotransferase values has been reported. Other reported adverse effects include headache, dizziness, sweating and skin rash.

Drowsiness, dizziness, headache, psychomotor impairment, urinary retention, dry mouth, blurred vision and gastro intestinal disturbances, paradoxical stimulation may rarely occur, especially in high dosage or in children.

Adverse effects with Dextromethorphan are rare, but nausea and dizziness sometimes occur. The drug produces no analgesia or addiction and little or no CNS depression. Excitation, confusion and respiratory depression may occur after overdosage.

Toxicity

The oral LD50 of bromhexine in rats is 6 g/kg. The observed symptoms of accidental overdose with bromhexine are consistent with the known adverse effects of bromhexine, including headache, nausea, and vomiting, among other symptoms. Provide symptomatic treatment and contact poison control services if an overdose is confirmed or suspected.

Oral LD50 (rat): 306 mg/kg; Oral LD50 (mice): 130 mg/kg; Oral LD50 (guinea pig): 198 mg/kg [Registry of Toxic Effects of Chemical Substances. Ed. D. Sweet, US Dept. of Health & Human Services: Cincinatti, 2010.] Also a mild reproductive toxin to women of childbearing age.

A dextromethorphan overdose may present as nausea, vomiting, stupor, coma, respiratory depression, seizures, tachycardia, hyperexcitability, toxic psychosis, ataxia, nystagmus, dystonia, blurred vision, changes in muscle reflexes, and serotonin syndrome. Overdose should be managed through symptomatic and supportive measures.

The most prevalent signs and symptoms associated with an overdose of guaifenesin have been nausea and vomiting .

Although adequate and well-controlled studies in pregnant women have not been performed, the Collaborative Perinatal Project monitored 197 mother-child pairs exposed to guaifenesin during the first trimester . An increased occurrence of inguinal hernias was found in the neonates . However, congenital defects were not strongly associated with guaifenesin use during pregnancy in 2 large groups of mother-child pairs .

Moreover, guaifenesin is excreted in breast milk in small quantities . Subsequently, caution should be exercised by balancing the potential benefit of treatment against any possible risks .

Additionally, an LD50 value of 1510 mg/kg (rat, oral) has been reported for guaifenesin .

The oral LD50 of pseudoephedrine is 2206mg/kg in rats and 726mg/kg in mice.

Patients experiencing an overdose of pseudoephedrine may present with giddiness, headache, nausea, vomiting, sweating, thirst, tachycardia, precordial pain, palpitations, difficulty urinating, muscle weakness, muscle tension, anxiety, restlessness, insomnia, toxic psychosis, cardiac arrhythmias, circulatory collapse, convulsions, coma, and respiratory failure. Treat overdose with symptomatic and supportive treatment including removal of unabsorbed drug.

Precaution

Since mucolytics may disrupt the gastric mucosa so Bromhexine should be used with care in patients with a history of peptic ulceration.

Chlorpheniramine may produce mild sedation and it is advised that patients under continuous treatment should avoid operating machinery. Not recommended during pregnancy & lactation.

Do not use Dextromethorphan to control a cough that is associated with smoking, asthma, or emphysema, or a cough that is productive (produces sputum or phlegm).

Interaction

Alcohol, CNS depressants, anticholinergic drugs, MAOIs.

The following medicines should be taken carefully while concomitantly use with Dextromethorphan: Amiodarone, Fluoexetine, Quinidine, CNS depressants and Monoamine oxidase (MAO) inhibitors.

Volume of Distribution

After intravenous administration in a pharmacokinetic study, bromhexine was found to be widely distributed. Bromhexine is known to cross the blood-brain barrier; small concentrations may cross the placenta. The average volume of distribution of bromhexine was 1209 ± 206 L (19 L/kg). Lung tissue concentrations of bromhexine two hours after a dose were 1.5 to 3.2 times higher in bronchial tissues than plasma concentrations. Pulmonary parynchema concentrations were 3.4 to 5.9 times higher when compared to plasma concentrations.

The volume of distribution of dextromethorphan is 5-6.7L/kg.

The geometric mean apparent volume of distribution of guaifenesin determined in healthy adult subjects is 116L (CV=45.7%) .

The apparent volume of distribution of pseudoephedrin is 2.6-3.3L/kg.

Elimination Route

After oral administration, bromhexine demonstrates linear pharmacokinetics when given in doses of 8-32 mg. Bromhexine is readily absorbed in the gastrointestinal tract at a rapid rate. This drug undergoes extensive first-pass effect in the range of 75-80%. The bioavailability is therefore reduced to approximately 22-27%.

Well absorbed in the gastrointestinal tract.

A 30mg oral dose of dextromethorphan reaches a Cmax of 2.9 ng/mL, with a Tmax of 2.86 h, and an AUC of 17.8 ng*h/mL.

Studies have shown that guaifenesin is well absorbed from and along the gastrointestinal tract after oral administration .

A 240mg oral dose of pseudoephedrine reaches a Cmax of 246.3±10.5ng/mL fed and 272.5±13.4ng/mL fasted, with a Tmax of 6.60±1.38h fed and 11.87±0.72h fasted, with an AUC of 6862.0±334.1ng*h/mL fed and 7535.1±333.0ng*h/mL fasted.

Half Life

Following single oral doses ranging from 8 and 32 mg, the terminal half-life of bromhexine has been measured between 6.6 and 31.4 hours.

21-27 hours

Dextromethorphan has a half life of 3-30 hours.

The half-life in plasma observed for guaifenesin is approximately one hour .

The mean elimination half life of pseudoephedrine is 6.0h.

Clearance

The clearance of bromhexine ranges from 843-1073 mL/min, within the range of the hepatic circulation.

The mean clearance recorded for guaifenesin is about 94.8 L/hr (CV=51.4%) .

A 60mg oral dose of pseudoephedrine has a clearance of 5.9±1.7mL/min/kg.

Elimination Route

After a dose of bromhexine was administered during a pharmacokinetic study, approximately 97% of the radiolabeled dose was detected in the urine; under 1% was detected as the parent drug.

After administration, guaifenesin is metabolized and then largely excreted in the urine .

55-75% of an oral dose is detected in the urine as unchanged pseudoephedrine.

Pregnancy & Breastfeeding use

Pregnancy Category B. Bromhexine has been taken by a large number of pregnant women and women of child bearing age without any proven increase in the frequency of malformations or other direct or indirect harmful effects on the fetus having been observed.

It is not known whether bromhexine is excreted in breast milk or whether it has a harmful effect on the breastfeeding infant. Therefore it is not recommended for breast feeding mothers unless the potential benefits to the patient are weighed against the possible risk to the infant.

Pregnancy Category B. Either animal-reproduction studies have not demonstrated a foetal risk but there are no controlled studies in pregnant women or animal-reproduction studies have shown an adverse effect (other than a decrease in fertility) that was not confirmed in controlled studies in women in the 1st trimester (and there is no evidence of a risk in later trimesters).

Pregnancy: Adequate and well-controlled studies in human have not been done. However, Dextromethorphan has not been reported to cause birth defects.

Lactation: It is not known whether dextromethorphan passes into breast milk. However, Dextromethorphan has not been reported to cause problems in nursing babies.

Contraindication

Contraindicated to those who are hypersensitive to Bromhexine Hydrochloride.

There is no definite contraindication to therapy. It should be used with caution in epilepsy, prostatic hypertrophy, glaucoma and hepatic disease. The ability to drive or operate machinery may be impaired.

Hypersensitivity to Dextromethorphan or any other component.

Acute Overdose

Symptoms: In mild overdose, tachycardia, hypertension, vomiting, mydriasis, diaphoresis, nystagmus, euphoria, loss of motor coordination, and giggling; in moderate intoxication, in addition to those listed above, hallucinations and a plodding ataxic gait; in severely intoxication, agitation or somnolence.

Management: treatment is symptomatic and supportive. Naloxone may be useful in reversing toxicity.

Storage Condition

Store below 25° C. Protect from light. Keep the container tightly closed.

Store at 15-30° C

Innovators Monograph


*** Taking medicines without doctor's advice can cause long-term problems.
Share