Lida Mantle HC

Lida Mantle HC Uses, Dosage, Side Effects, Food Interaction and all others data.

Hydrocortisone is a naturally occurring corticosteroid, which causes profound and varied metabolic effects. In addition, they modify body’s immune response to diverse stimuli. Hydrocortisone sodium succinate has the same metabolic and anti-inflammatory actions as hydrocortisone.

Hydrocortisone binds to the glucocorticoid receptor leading to downstream effects such as inhibition of phospholipase A2, NF-kappa B, other inflammatory transcription factors, and the promotion of anti-inflammatory genes.[A187463] Hydrocortisone has a wide therapeutic index and a moderate duration of action. Patients should stop taking the medication if irritation or sensitization occurs.

Lidocaine is an amide type local anaesth. It stabilises the neuronal membrane and inhibits Na ion movements, which are necessary for conduction of impulses. In the heart, lidocaine reduces depolarisation of the ventricles during diastole and automaticity in the His-Purkinje system. Duration of action potential and effective refractory period are also reduced.

Excessive blood levels of lidocaine can cause changes in cardiac output, total peripheral resistance, and mean arterial pressure . With central neural blockade these changes may be attributable to the block of autonomic fibers, a direct depressant effect of the local anesthetic agent on various components of the cardiovascular system, and/or the beta-adrenergic receptor stimulating action of epinephrine when present . The net effect is normally a modest hypotension when the recommended dosages are not exceeded .

In particular, such cardiac effects are likely associated with the principal effect that lidocaine elicits when it binds and blocks sodium channels, inhibiting the ionic fluxes required for the initiation and conduction of electrical action potential impulses necessary to facilitate muscle contraction . Subsequently, in cardiac myocytes, lidocaine can potentially block or otherwise slow the rise of cardiac action potentials and their associated cardiac myocyte contractions, resulting in possible effects like hypotension, bradycardia, myocardial depression, cardiac arrhythmias, and perhaps cardiac arrest or circulatory collapse .

Moreover, lidocaine possesses a dissociation constant (pKa) of 7.7 and is considered a weak base . As a result, about 25% of lidocaine molecules will be un-ionized and available at the physiological pH of 7.4 to translocate inside nerve cells, which means lidocaine elicits an onset of action more rapidly than other local anesthetics that have higher pKa values . This rapid onset of action is demonstrated in about one minute following intravenous injection and fifteen minutes following intramuscular injection . The administered lidocaine subsequently spreads rapidly through the surrounding tissues and the anesthetic effect lasts approximately ten to twenty minutes when given intravenously and about sixty to ninety minutes after intramuscular injection .

Trade Name Lida Mantle HC
Generic Lidocaine + hydrocortisone
Type
Therapeutic Class
Manufacturer
Available Country United States
Last Updated: September 19, 2023 at 7:00 am
Lida Mantle HC
Lida Mantle HC

Uses

Hydrocortisone is used for the use in the following conditions: Primary or secondary adrenocortical insufficiency, Acute adrenocortical insufficiency, Shock unresponsive to conventional therapy, Congenital adrenal hyperplasia, Hypercalcemia associated with cancer, Nonsuppurative thyroiditis, Rheumatic Disorders, Dermatologic Diseases (Allergic States, Severe seborrheic dermatitis, Severe psoriasis, Pemphigus, Severe erythema multiforme), Control of severe or incapacitating allergic conditions (Bronchial asthma, Contact dermatitis, Atopic dermatitis, Serum sickness, Seasonal or perennial allergic rhinitis, Drug hypersensitivity reactions, Urticarial transfusion reactions, Acute noninfectious laryngeal edema), Ophthalmic Diseases (Herpes zoster ophthalmicus, Iritis, iridocyclitis, Chorioretinitis, Diffuse posterior uveitis and choroiditis, Optic neuritis), Gastrointestinal Diseases, Fulminating or disseminated pulmonary tuberculosis when used concurrently with appropriate antituberculous chemotherapy, Loeffler's syndrome, Aspiration pneumonitis, Hematologic Disorders (Acquired, autoimmune hemolytic anemia, Idiopathic thrombocytopenic purpura in adults, Secondary thrombocytopenia, Erythroblastopenia), Neoplastic Diseases (Leukemias and lymphomas in adults, Acute leukemia of childhood), Edematous States, Acute exacerbations of multiple sclerosis

Lidocaine is a topical anesthetic used for the following purposes-

  • To help prevent pain associated with minor surgical procedures in the ear, nose and throat
  • To help prevent pain and or discomfort during dental procedures (e.g., prior to an injection)
  • During general anesthesia to prevent coughing
  • To help prevent pain during the final stages of childbirth, before the cutting or stitching of the perineum (skin between the vagina and anus)

Lida Mantle HC is also used to associated treatment for these conditions: Acute Gouty Arthritis, Acute Otitis Externa, Adrenal Insufficiency, Allergic Rhinitis (AR), Allergic corneal marginal ulcers, Anal Fissures, Ankylosing Spondylitis (AS), Anterior Segment Inflammation, Aspiration Pneumonitis, Asthma, Atopic Dermatitis (AD), Berylliosis, Bullous dermatitis herpetiformis, Chorioretinitis, Choroiditis, Congenital Adrenal Hyperplasia (CAH), Congenital Hypoplastic Anemia, Corneal Inflammation, Crohn's Disease (CD), Dermatitis, Dermatitis exfoliative generalised, Dermatitis, Contact, Dermatomyositis, Dermatosis, Drug hypersensitivity reaction, Epicondylitis, Erythroblastopenia, Hemorrhoids, Herpes Labialis, Hypercalcemia of Malignancy, Idiopathic Thrombocytopenic Purpura, Infection of the Fenestration Cavity, Infection of the Mastoidectomy Cavity, Iridocyclitis, Iritis, Itching caused by Hemorrhoids, Itching of the Anus, Leukemia, Acute, Leukemias, Loeffler's syndrome, Lymphomas NEC, Malignant Lymphomas, Mycosis Fungoides (MF), Ophthalmia, Sympathetic, Optic Neuritis, Pain caused by Hemorrhoids, Pemphigus, Post-traumatic Osteoarthritis, Primary adrenocortical insufficiency, Proctitis, Proteinuria, Psoriatic Arthritis, Rectal inflammations NEC, Rheumatic heart disease, unspecified, Rheumatoid Arthritis, Rheumatoid Arthritis, Juvenile, Seasonal Allergic Conjunctivitis, Secondary adrenocortical insufficiency, Secondary thrombocytopenia, Serum Sickness, Severe Seborrheic Dermatitis, Skin Diseases, Stevens-Johnson Syndrome, Synovitis, Systemic Lupus Erythematosus (SLE), Trichinosis, Tuberculous Meningitis, Ulcerative Colitis, Acquired immune hemolytic anemia, Acute Bursitis, Acute Tenosynovitis, Acute rheumatic carditis, Cryptitis, Disseminated Pulmonary Tuberculosis, Fulminating Pulmonary Tuberculosis, Itching skin, Non-suppurative Thyroiditis, Severe Erythema multiforme, Severe Psoriasis, Subacute Bursitis, Superficial infection of the external auditory canal with inflammation, Symptomatic Sarcoidosis, Systemic Dermatomyositis, Varicella-zoster virus acute retinal necrosis, PalliativeAcute Otitis Media, Anal Fissures, Anorectal discomfort, Arrhythmia, Back Pain Lower Back, Bacterial Vaginosis (BV), Burns, Cervical Syndrome, Earache, Hemorrhoids, Infection, Inflammatory Reaction caused by ear infection-not otherwise specified, Insect Bites, Joint Pain, Mixed Vaginal Infections, Multiple Myeloma (MM), Myringitis, Neuritis, Osteolysis caused by Bone Tumors, Osteoporosis, Otitis Externa, Pain caused by ear infection-not otherwise specified, Pain, Inflammatory, Post-Herpetic Neuralgia (PHN), Postherpetic Neuralgia, Primary Hyperparathyroidism, Rheumatic Diseases, Rheumatic Joint Disease, Sciatica, Skin Irritation, Soft Tissue Inflammation, Sore Throat, Sunburn, Susceptible infections, Trichomonas Vaginitis, Ulcers, Leg, Urethral Strictures, Vulvovaginal Candidiasis, Abrasions, Anal discomfort, Arrhythmia of ventricular origin, Cutaneous lesions, Gum pain, Minor burns, Superficial Wounds, Susceptible Bacterial Infections, Ulceration of the mouth, Viral infections of the external ear canal, Post Myocardial Infarction Treatment, Regional Anesthesia, Local anesthesia therapy

How Lida Mantle HC works

The short term effects of corticosteroids are decreased vasodilation and permeability of capillaries, as well as decreased leukocyte migration to sites of inflammation.[A187463] Corticosteroids binding to the glucocorticoid receptor mediates changes in gene expression that lead to multiple downstream effects over hours to days.[A187463]

Glucocorticoids inhibit neutrophil apoptosis and demargination; they inhibit phospholipase A2, which decreases the formation of arachidonic acid derivatives; they inhibit NF-Kappa B and other inflammatory transcription factors; they promote anti-inflammatory genes like interleukin-10.[A187463]

Lower doses of corticosteroids provide an anti-inflammatory effect, while higher doses are immunosuppressive.[A187463] High doses of glucocorticoids for an extended period bind to the mineralocorticoid receptor, raising sodium levels and decreasing potassium levels.[A187463]

Lidocaine is a local anesthetic of the amide type . It is used to provide local anesthesia by nerve blockade at various sites in the body . It does so by stabilizing the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses, thereby effecting local anesthetic action . In particular, the lidocaine agent acts on sodium ion channels located on the internal surface of nerve cell membranes . At these channels, neutral uncharged lidocaine molecules diffuse through neural sheaths into the axoplasm where they are subsequently ionized by joining with hydrogen ions . The resultant lidocaine cations are then capable of reversibly binding the sodium channels from the inside, keeping them locked in an open state that prevents nerve depolarization . As a result, with sufficient blockage, the membrane of the postsynaptic neuron will ultimately not depolarize and will thus fail to transmit an action potential . This facilitates an anesthetic effect by not merely preventing pain signals from propagating to the brain but by aborting their generation in the first place .

In addition to blocking conduction in nerve axons in the peripheral nervous system, lidocaine has important effects on the central nervous system and cardiovascular system . After absorption, lidocaine may cause stimulation of the CNS followed by depression and in the cardiovascular system, it acts primarily on the myocardium where it may produce decreases in electrical excitability, conduction rate, and force of contraction .

Dosage

Lida Mantle HC dosage

Tablet: The initial dosage of Hydrocortisone Tablets may vary from 20 mg to 240 mg of hydrocortisone per day depending on the specific disease entity being treated. In situations of less severity, lower doses will generally suffice, while in selected patients higher initial doses may be required. The initial dosage should be maintained or adjusted until a satisfactory response is noted. If after a reasonable period of time there is a lack of satisfactory clinical response, Hydrocortisone Tablets should be discontinued and the patient transferred to other appropriate therapy.

It should be emphasized that dosage requirements are variable and must be individualized on the basis of the disease under treatment and the response of the patients.After a favorable response is noted, the proper maintenance dosage should be determined by decreasing the initial drug dosage in small decrements at appropriate time intervals until the lowest dosage which will maintain an adequate clinical response. It should be kept in mind that constant monitoring is needed in regard to drug dosage. If, after long-term therapy the drug is to be stopped, it is recommended that it be withdrawn gradually, rather than abruptly.

Injection:

  • Adult: By IM injection or slow IV injection or infusion. The initial dose of Hydrocortisone sterile powder is 100 mg to 500 mg, depending on the severity of the condition. This dose may be repeated at intervals of 2, 4 or 6 hours as indicated by the patient's response and clinical condition.
  • Children: By slow IV injection, up to 1 year 25 mg, 1-5 years 50 mg, 6-12 years 100 mg.

Intramuscular:Emergency treatment of ventricular arrhythmias: 300 mg injected into the deltoid muscle, repeat after 60-90 min if necessary.

Intraspinal:Spinal anaesthesia: As hyperbaric soln of 1.5% or 5% lidocaine in 7.5% glucose soln. Normal vaginal delivery: Up to 50 mg (as 5% soln) or 9-15 mg (as 1.5% soln). Caesarian operation: Up to 75 mg (as 5% soln). Other surgical procedures: 75-100 mg.Intravenous:Pulseless ventricular fibrillation or ventricular tachycardia : 1-1.5 mg/kg repeated as necessary. Max: 3 mg/kg. For ventricular arrhythmias in more stable patients: Usual loading dose: 50-100 mg as an IV inj at 25-50 mg/min, may repeat once or twice up to a max of 200-300 mg in 1 hr, followed by 1-4 mg/min via continuous IV infusion. May need to reduce dose if the infusion is longer than 24 hr.

Intravenous:Intravenous regional anaesthesia: As 0.5% soln w/o epinephrine: 50-300 mg. Max: 4 mg/kg.

Parenteral:Percutaneous infiltration anaesthesia: As 0.5% or 1% soln: 5-300 mg.Sympathetic nerve block: As 1% soln: 50 mg for cervical block or 50-100 mg for lumbar block.Peripheral nerve block:

  • As 1.5% soln: For brachial plexus block: 225-300 mg.
  • As 2% soln: For dental nerve block: 20-100 mg.
  • As 1% soln: For intercostal nerve block: 30 mg;
  • For paracervical block: 100 mg on each side, repeated not more frequently than every 90 min;
  • For paravertebral block: 30-50 mg;
  • For pudendal block: 100 mg on each side.
  • As 4% soln: For retrobulbar block: 120-200 mg.

Spray:

  • The maximum dose is 200 mg (Approximately 20 spray).
  • In dentistry, the normal dose is 1-5 sprays. Two sprays per quarter of the mouth is recommended, with a maximum of 3 sprays per quarter of the mouth over 30 minutes.
  • In sinus procedures 3 sprays are used.
  • In procedures of the throat and windpipe, up to 20 sprays may be necessary.
  • Up to 20 sprays may be necessary in childbirth (cesarian procedure).
  • Lower doses are used for children aged 3-12 years. Lidocaine 10% Spray is not recommended for children under 3 years.

Topical: Anaesthesia before e.g. venepuncture (not for infants), apply a thick layer under an occlusive dressing 1-5 hours before procedure; split skin grafting, apply a thick layer under an occlusive dressing 2-5 hours before procedure; genital warts (not for children), apply up to 10 gm 5-10 minutes before removal.

Side Effects

Hydrocortisone is generally well tolerated except in prolonged high doses. It may cause cardiac arrhythmia, esophageal candidiasis, menstrual irregularity, decreased carbohydrate & glucose tolerance, fluid retention, increased appetite, weight gain, euphoria, mood swings, depression, insomnia, acne etc.

Arrhythmia, bradycardia, arterial spasms, CV collapse, oedema, flushing, hert block, hypotension, sinus node suppression, agitation, anxiety, coma, confusion, drowsiness, hallucinations, euphoria, headache, hyperaesthesia, hypoaesthesia, lightheadedness, lethargy, nervousness, psychosis, seizure, slurred speech, unconsciousness, somnolence, nausea, vomiting, metallic taste, tinnitus, disorientation, dizziness, paraesthesia, resp depression and convulsions. Patch: Bruising, depigmentation, petechiae, irritation. Ophth: Conjunctival hyperaemia, corneal epithelial changes, diplopia,visual changes.

Toxicity

Data regarding acute overdoses of glucocorticoids are rare. Chronic high doses of glucocorticoids can lead to the development of cataract, glaucoma, hypertension, water retention, hyperlipidemia, peptic ulcer, pancreatitis, myopathy, osteoporosis, mood changes, psychosis, dermal atrophy, allergy, acne, hypertrichosis, immune suppression, decreased resistance to infection, moon face, hyperglycemia, hypocalcemia, hypophosphatemia, metabolic acidosis, growth suppression, and secondary adrenal insufficiency. Overdose may be treated by adjusting the dose or stopping the corticosteroid as well as initiating symptomatic and supportive treatment.

Symptoms of overdose and/or acute systemic toxicity involves central nervous system toxicity that presents with symptoms of increasing severity . Patients may present initially with circumoral paraesthesia, numbness of the tongue, light-headedness, hyperacusis, and tinnitus . Visual disturbance and muscular tremors or muscle twitching are more serious and precede the onset of generalized convulsions . These signs must not be mistaken for neurotic behavior . Unconsciousness and grand mal convulsions may follow, which may last from a few seconds to several minutes . Hypoxia and hypercapnia occur rapidly following convulsions due to increased muscular activity, together with the interference with normal respiration and loss of the airway . In severe cases, apnoea may occur. Acidosis increases the toxic effects of local anesthetics . Effects on the cardiovascular system may be seen in severe cases . Hypotension, bradycardia, arrhythmia and cardiac arrest may occur as a result of high systemic concentrations, with potentially fatal outcome .

Pregnancy Category B has been established for the use of lidocaine in pregnancy, although there are no formal, adequate, and well-controlled studies in pregnant women . General consideration should be given to this fact before administering lidocaine to women of childbearing potential, especially during early pregnancy when maximum organogenesis takes place . Ultimately, although animal studies have revealed no evidence of harm to the fetus, lidocaine should not be administered during early pregnancy unless the benefits are considered to outweigh the risks . Lidocaine readily crosses the placental barrier after epidural or intravenous administration to the mother . The ratio of umbilical to maternal venous concentration is 0.5 to 0.6 . The fetus appears to be capable of metabolizing lidocaine at term . The elimination half-life in the newborn of the drug received in utero is about three hours, compared with 100 minutes in the adult . Elevated lidocaine levels may persist in the newborn for at least 48 hours after delivery . Fetal bradycardia or tachycardia, neonatal bradycardia, hypotonia or respiratory depression may occur .

Local anesthetics rapidly cross the placenta and when used for epidural, paracervical, pudendal or caudal block anesthesia, can cause varying degrees of maternal, fetal and neonatal toxicity . The potential for toxicity depends upon the procedure performed, the type and amount of drug used, and the technique of drug administration . Adverse reactions in the parturient, fetus and neonate involve alterations of the central nervous system, peripheral vascular tone, and cardiac function .

Maternal hypotension has resulted from regional anesthesia . Local anesthetics produce vasodilation by blocking sympathetic nerves . Elevating the patient’s legs and positioning her on her left side will help prevent decreases in blood pressure . The fetal heart rate also should be monitored continuously, and electronic fetal monitoring is highly advisable .

Epidural, spinal, paracervical, or pudendal anesthesia may alter the forces of parturition through changes in uterine contractility or maternal expulsive efforts . In one study, paracervical block anesthesia was associated with a decrease in the mean duration of first stage labor and facilitation of cervical dilation . However, spinal and epidural anesthesia have also been reported to prolong the second stage of labor by removing the parturient’s reflex urge to bear down or by interfering with motor function . The use of obstetrical anesthesia may increase the need for forceps assistance .

The use of some local anesthetic drug products during labor and delivery may be followed by diminished muscle strength and tone for the first day or two of life . The long-term significance of these observations is unknown . Fetal bradycardia may occur in 20 to 30 percent of patients receiving paracervical nerve block anesthesia with the amide-type local anesthetics and may be associated with fetal acidosis . Fetal heart rate should always be monitored during paracervical anesthesia . The physician should weigh the possible advantages against risks when considering a paracervical block in prematurity, toxemia of pregnancy, and fetal distress . Careful adherence to the recommended dosage is of the utmost importance in obstetrical paracervical block . Failure to achieve adequate analgesia with recommended doses should arouse suspicion of intravascular or fetal intracranial injection . Cases compatible with unintended fetal intracranial injection of local anesthetic solution have been reported following intended paracervical or pudendal block or both. Babies so affected present with unexplained neonatal depression at birth, which correlates with high local anesthetic serum levels, and often manifest seizures within six hours . Prompt use of supportive measures combined with forced urinary excretion of the local anesthetic has been used successfully to manage this complication .

It is not known whether this drug is excreted in human milk . Because many drugs are excreted in human milk, caution should be exercised when lidocaine is administered to a nursing woman .

Dosages in children should be reduced, commensurate with age, body weight and physical condition .

The oral LD 50 of lidocaine HCl in non-fasted female rats is 459 (346-773) mg/kg (as the salt) and 214 (159-324) mg/kg (as the salt) in fasted female rats .

Precaution

Hydrocortisone should be used with caution in patients with a history of peptic ulceration as it increases the incidence of peptic ulceration. This drug should be used with caution in patients with congestive heart failure, hypertension, glaucoma, diabetic mellitus and epilepsy.

Patient with pseudocholinesterase deficiency, resp depression. Hepatic and renal impairment. Elderly or debilitated patients. Pregnancy and lactation.

Interaction

Drug interaction of hydrocortisone has been reported with amphotericin B, potassium-depleting agents, macrolide antibiotics, warfarin, antidiabetics, isoniazid, digitalis glycosides, estrogens, barbiturates, phenytoin, carbamazepine, ketoconazole, aspirin etc.

May increase serum levels with cimetidine and propranolol. Increased risk of cardiac depression with β-blockers and other antiarrhythmics. Additive cardiac effects with IV phenytoin. Hypokalaemia caused by acetazolamide, loop diuretics and thiazides may antagonise effect of lidocaine. Dose requirements may be increased with long-term use of phenytoin and other enzyme-inducers.

Volume of Distribution

Total hydrocortisone has a volume of distribution of 39.82L, while the free fraction has a volume of distribution of 474.38L.

The volume of distribution determined for lidocaine is 0.7 to 1.5 L/kg .

In particular, lidocaine is distributed throughout the total body water . Its rate of disappearance from the blood can be described by a two or possibly even three-compartment model . There is a rapid disappearance (alpha phase) which is believed to be related to uptake by rapidly equilibrating tissues (tissues with high vascular perfusion, for example) . The slower phase is related to distribution to slowly equilibrating tissues (beta phase) and to its metabolism and excretion (gamma phase) .

Lidocaine's distribution is ultimately throughout all body tissues . In general, the more highly perfused organs will show higher concentrations of the agent . The highest percentage of this drug will be found in skeletal muscle, mainly due to the mass of muscle rather than an affinity .

Elimination Route

Oral hydrocortisone at a dose of 0.2-0.3mg/kg/day reached a mean Cmax of 32.69nmol/L with a mean AUC of 90.63h*nmol/L A 0.4-0.6mg/kg/day dose reached a mean Cmax of 70.81nmol/L with a mean AUC of 199.11h*nmol/L. However, the pharmacokinetics of hydrocortisone can vary by 10 times from patient to patient.

Topical hydrocortisone cream is 4-19% bioavailable[8546995] with a Tmax of 24h.

Hydrocortisone retention enemas are have a bioavailability of 0.810 for slow absorbers and 0.502 in rapid absorbers. Slow absorbers take up hydrocortisone at a rate of 0.361±0.255/h while fast absorbers take up hydrocortisone at a rate of 1.05±0.255/h.

A 20mg IV dose of hydrocortisone has an AUC of 1163±277ng*h/mL.

In general, lidocaine is readily absorbed across mucous membranes and damaged skin but poorly through intact skin . The agent is quickly absorbed from the upper airway, tracheobronchial tree, and alveoli into the bloodstream . And although lidocaine is also well absorbed across the gastrointestinal tract the oral bioavailability is only about 35% as a result of a high degree of first-pass metabolism . After injection into tissues, lidocaine is also rapidly absorbed and the absorption rate is affected by both vascularity and the presence of tissue and fat capable of binding lidocaine in the particular tissues .

The concentration of lidocaine in the blood is subsequently affected by a variety of aspects, including its rate of absorption from the site of injection, the rate of tissue distribution, and the rate of metabolism and excretion . Subsequently, the systemic absorption of lidocaine is determined by the site of injection, the dosage given, and its pharmacological profile . The maximum blood concentration occurs following intercostal nerve blockade followed in order of decreasing concentration, the lumbar epidural space, brachial plexus site, and subcutaneous tissue . The total dose injected regardless of the site is the primary determinant of the absorption rate and blood levels achieved . There is a linear relationship between the amount of lidocaine injected and the resultant peak anesthetic blood levels .

Nevertheless, it has been observed that lidocaine hydrochloride is completely absorbed following parenteral administration, its rate of absorption depending also on lipid solubility and the presence or absence of a vasoconstrictor agent . Except for intravascular administration, the highest blood levels are obtained following intercostal nerve block and the lowest after subcutaneous administration .

Additionally, lidocaine crosses the blood-brain and placental barriers, presumably by passive diffusion .

Half Life

Total hydrocortisone via the oral route has a half life of 2.15h while the free fraction has a half life of 1.39h. A 20mg IV dose of hydrocortisone has a terminal half life of 1.9±0.4h.

The elimination half-life of lidocaine hydrochloride following an intravenous bolus injection is typically 1.5 to 2.0 hours . Because of the rapid rate at which lidocaine hydrochloride is metabolized, any condition that affects liver function may alter lidocaine HCl kinetics . The half-life may be prolonged two-fold or more in patients with liver dysfunction .

Clearance

Total hydrocortisone by the oral route has a mean clearance of 12.85L/h, while the free fraction has a mean clearance of 235.78L/h. A 20mg IV dose of hydrocortisone has a clearance of 18.2±4.2L/h.

The mean systemic clearance observed for intravenously administered lidocaine in a study of 15 adults was approximately 0.64 +/- 0.18 L/min .

Elimination Route

Corticosteroids are eliminated predominantly in the urine.[A187436] However, data regarding the exact proportion is not readily available.

The excretion of unchanged lidocaine and its metabolites occurs predominantly via the kidney with less than 5% in the unchanged form appearing in the urine . The renal clearance is inversely related to its protein binding affinity and the pH of the urine . This suggests by the latter that excretion of lidocaine occurs by non-ionic diffusion .

Pregnancy & Breastfeeding use

Pregnancy category C. Corticosteroids should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Use in nursing mother: Systemically administered corticosteroids appear in human milk and could suppress growth, interfere with endogenous corticosteroid production, or cause other untoward effects. Because of the potential for serious adverse reactions in nursing infants from corticosteroids, a decision should be made whether to continue nursing or discontinue the drug, taking into account the importance of the drug to the mother.

Category B: Either animal-reproduction studies have not demonstrated a foetal risk but there are no controlled studies in pregnant women or animal-reproduction studies have shown an adverse effect (other than a decrease in fertility) that was not confirmed in controlled studies in women in the 1st trimester (and there is no evidence of a risk in later trimesters).

Contraindication

Hydrocortisone is contraindicated in severe systemic fungal infections and patients with known hypersensitivity to any component of this product.

Hypovolaemia, complete heart block, Adam-Stokes syndrome, Wolff-Parkinson-White syndrome. Must not be applied to inflamed or injured skin.

Special Warning

Use in elderly patients: Clinical studies were not done in patients’ aged 65 and above. In general dose selection for an elderly patients should be cautious, usually starting at the low end of the dosing range.

Hepatic Impairment Parenteral: Dosage reduction may be needed.

Acute Overdose

Symptoms: Severe hypotension, asystole, bradycardia, apnoea, seizures, coma, cardiac arrest, resp arrest and death.

Management: Maintain oxygenation, stop convulsion and support the circulation.

Storage Condition

Store at 15-30°C.

Store below 25°C.

Innovators Monograph

You find simplified version here Lida Mantle HC


*** Taking medicines without doctor's advice can cause long-term problems.
Share