Lignocaine Uses, Dosage, Side Effects and more

Lignocaine is an amide type local anaesth. It stabilises the neuronal membrane and inhibits Na ion movements, which are necessary for conduction of impulses. In the heart, lidocaine reduces depolarisation of the ventricles during diastole and automaticity in the His-Purkinje system. Duration of action potential and effective refractory period are also reduced.

Excessive blood levels of lidocaine can cause changes in cardiac output, total peripheral resistance, and mean arterial pressure . With central neural blockade these changes may be attributable to the block of autonomic fibers, a direct depressant effect of the local anesthetic agent on various components of the cardiovascular system, and/or the beta-adrenergic receptor stimulating action of epinephrine when present . The net effect is normally a modest hypotension when the recommended dosages are not exceeded .

In particular, such cardiac effects are likely associated with the principal effect that lidocaine elicits when it binds and blocks sodium channels, inhibiting the ionic fluxes required for the initiation and conduction of electrical action potential impulses necessary to facilitate muscle contraction . Subsequently, in cardiac myocytes, lidocaine can potentially block or otherwise slow the rise of cardiac action potentials and their associated cardiac myocyte contractions, resulting in possible effects like hypotension, bradycardia, myocardial depression, cardiac arrhythmias, and perhaps cardiac arrest or circulatory collapse .

Moreover, lidocaine possesses a dissociation constant (pKa) of 7.7 and is considered a weak base . As a result, about 25% of lidocaine molecules will be un-ionized and available at the physiological pH of 7.4 to translocate inside nerve cells, which means lidocaine elicits an onset of action more rapidly than other local anesthetics that have higher pKa values . This rapid onset of action is demonstrated in about one minute following intravenous injection and fifteen minutes following intramuscular injection . The administered lidocaine subsequently spreads rapidly through the surrounding tissues and the anesthetic effect lasts approximately ten to twenty minutes when given intravenously and about sixty to ninety minutes after intramuscular injection .

Trade Name Lignocaine
Availability Prescription only
Generic Lidocaine
Lidocaine Other Names Lidocaína, Lidocaina, Lidocaine, Lidocainum, Lignocaine
Related Drugs propranolol, atenolol, amiodarone, fentanyl, verapamil, flecainide, ketamine, hyoscyamine, Tenormin, propofol
Weight 2%, 500mg/50ml, 1%, 20mg/ml
Type Injection
Formula C14H22N2O
Weight Average: 234.3373
Monoisotopic: 234.173213336
Protein binding

The protein binding recorded for lidocaine is about 60 to 80% and is dependent upon the plasma concentration of alpha-1-acid glycoprotein . Such percentage protein binding bestows lidocaine with a medium duration of action when placed in comparison to other local anesthetic agents .

Groups Approved, Vet approved
Therapeutic Class Local & Surface anesthesia
Manufacturer Waldamar, Essential Drugs Company Ltd, Elite Pharma
Available Country Bangladesh, Pakistan
Last Updated: January 7, 2025 at 1:49 am

Uses

Lignocaine is a topical anesthetic used for the following purposes-

Lignocaine is also used to associated treatment for these conditions: Acute Otitis Media, Anal Fissures, Anorectal discomfort, Arrhythmia, Back Pain Lower Back, Bacterial Vaginosis (BV), Burns, Cervical Syndrome, Earache, Hemorrhoids, Infection, Inflammatory Reaction caused by ear infection-not otherwise specified, Insect Bites, Joint Pain, Mixed Vaginal Infections, Multiple Myeloma (MM), Myringitis, Neuritis, Osteolysis caused by Bone Tumors, Osteoporosis, Otitis Externa, Pain caused by ear infection-not otherwise specified, Pain, Inflammatory, Post-Herpetic Neuralgia (PHN), Postherpetic Neuralgia, Primary Hyperparathyroidism, Rheumatic Diseases, Rheumatic Joint Disease, Sciatica, Skin Irritation, Soft Tissue Inflammation, Sore Throat, Sunburn, Susceptible infections, Trichomonas Vaginitis, Ulcers, Leg, Urethral Strictures, Vulvovaginal Candidiasis, Abrasions, Anal discomfort, Arrhythmia of ventricular origin, Cutaneous lesions, Gum pain, Minor burns, Superficial Wounds, Susceptible Bacterial Infections, Ulceration of the mouth, Viral infections of the external ear canal, Post Myocardial Infarction Treatment, Regional Anesthesia, Local anesthesia therapy

How Lignocaine works

Lignocaine is a local anesthetic of the amide type . It is used to provide local anesthesia by nerve blockade at various sites in the body . It does so by stabilizing the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses, thereby effecting local anesthetic action . In particular, the lidocaine agent acts on sodium ion channels located on the internal surface of nerve cell membranes . At these channels, neutral uncharged lidocaine molecules diffuse through neural sheaths into the axoplasm where they are subsequently ionized by joining with hydrogen ions . The resultant lidocaine cations are then capable of reversibly binding the sodium channels from the inside, keeping them locked in an open state that prevents nerve depolarization . As a result, with sufficient blockage, the membrane of the postsynaptic neuron will ultimately not depolarize and will thus fail to transmit an action potential . This facilitates an anesthetic effect by not merely preventing pain signals from propagating to the brain but by aborting their generation in the first place .

In addition to blocking conduction in nerve axons in the peripheral nervous system, lidocaine has important effects on the central nervous system and cardiovascular system . After absorption, lidocaine may cause stimulation of the CNS followed by depression and in the cardiovascular system, it acts primarily on the myocardium where it may produce decreases in electrical excitability, conduction rate, and force of contraction .

Dosage

Intramuscular:Emergency treatment of ventricular arrhythmias: 300 mg injected into the deltoid muscle, repeat after 60-90 min if necessary.

Intraspinal:Spinal anaesthesia: As hyperbaric soln of 1.5% or 5% lidocaine in 7.5% glucose soln. Normal vaginal delivery: Up to 50 mg (as 5% soln) or 9-15 mg (as 1.5% soln). Caesarian operation: Up to 75 mg (as 5% soln). Other surgical procedures: 75-100 mg.Intravenous:Pulseless ventricular fibrillation or ventricular tachycardia : 1-1.5 mg/kg repeated as necessary. Max: 3 mg/kg. For ventricular arrhythmias in more stable patients: Usual loading dose: 50-100 mg as an IV inj at 25-50 mg/min, may repeat once or twice up to a max of 200-300 mg in 1 hr, followed by 1-4 mg/min via continuous IV infusion. May need to reduce dose if the infusion is longer than 24 hr.

Intravenous:Intravenous regional anaesthesia: As 0.5% soln w/o epinephrine: 50-300 mg. Max: 4 mg/kg.

Parenteral:Percutaneous infiltration anaesthesia: As 0.5% or 1% soln: 5-300 mg.Sympathetic nerve block: As 1% soln: 50 mg for cervical block or 50-100 mg for lumbar block.Peripheral nerve block:

Spray:

Topical: Anaesthesia before e.g. venepuncture (not for infants), apply a thick layer under an occlusive dressing 1-5 hours before procedure; split skin grafting, apply a thick layer under an occlusive dressing 2-5 hours before procedure; genital warts (not for children), apply up to 10 gm 5-10 minutes before removal.

Side Effects

Arrhythmia, bradycardia, arterial spasms, CV collapse, oedema, flushing, hert block, hypotension, sinus node suppression, agitation, anxiety, coma, confusion, drowsiness, hallucinations, euphoria, headache, hyperaesthesia, hypoaesthesia, lightheadedness, lethargy, nervousness, psychosis, seizure, slurred speech, unconsciousness, somnolence, nausea, vomiting, metallic taste, tinnitus, disorientation, dizziness, paraesthesia, resp depression and convulsions. Patch: Bruising, depigmentation, petechiae, irritation. Ophth: Conjunctival hyperaemia, corneal epithelial changes, diplopia,visual changes.

Toxicity

Symptoms of overdose and/or acute systemic toxicity involves central nervous system toxicity that presents with symptoms of increasing severity . Patients may present initially with circumoral paraesthesia, numbness of the tongue, light-headedness, hyperacusis, and tinnitus . Visual disturbance and muscular tremors or muscle twitching are more serious and precede the onset of generalized convulsions . These signs must not be mistaken for neurotic behavior . Unconsciousness and grand mal convulsions may follow, which may last from a few seconds to several minutes . Hypoxia and hypercapnia occur rapidly following convulsions due to increased muscular activity, together with the interference with normal respiration and loss of the airway . In severe cases, apnoea may occur. Acidosis increases the toxic effects of local anesthetics . Effects on the cardiovascular system may be seen in severe cases . Hypotension, bradycardia, arrhythmia and cardiac arrest may occur as a result of high systemic concentrations, with potentially fatal outcome .

Pregnancy Category B has been established for the use of lidocaine in pregnancy, although there are no formal, adequate, and well-controlled studies in pregnant women . General consideration should be given to this fact before administering lidocaine to women of childbearing potential, especially during early pregnancy when maximum organogenesis takes place . Ultimately, although animal studies have revealed no evidence of harm to the fetus, lidocaine should not be administered during early pregnancy unless the benefits are considered to outweigh the risks . Lignocaine readily crosses the placental barrier after epidural or intravenous administration to the mother . The ratio of umbilical to maternal venous concentration is 0.5 to 0.6 . The fetus appears to be capable of metabolizing lidocaine at term . The elimination half-life in the newborn of the drug received in utero is about three hours, compared with 100 minutes in the adult . Elevated lidocaine levels may persist in the newborn for at least 48 hours after delivery . Fetal bradycardia or tachycardia, neonatal bradycardia, hypotonia or respiratory depression may occur .

Local anesthetics rapidly cross the placenta and when used for epidural, paracervical, pudendal or caudal block anesthesia, can cause varying degrees of maternal, fetal and neonatal toxicity . The potential for toxicity depends upon the procedure performed, the type and amount of drug used, and the technique of drug administration . Adverse reactions in the parturient, fetus and neonate involve alterations of the central nervous system, peripheral vascular tone, and cardiac function .

Maternal hypotension has resulted from regional anesthesia . Local anesthetics produce vasodilation by blocking sympathetic nerves . Elevating the patient’s legs and positioning her on her left side will help prevent decreases in blood pressure . The fetal heart rate also should be monitored continuously, and electronic fetal monitoring is highly advisable .

Epidural, spinal, paracervical, or pudendal anesthesia may alter the forces of parturition through changes in uterine contractility or maternal expulsive efforts . In one study, paracervical block anesthesia was associated with a decrease in the mean duration of first stage labor and facilitation of cervical dilation . However, spinal and epidural anesthesia have also been reported to prolong the second stage of labor by removing the parturient’s reflex urge to bear down or by interfering with motor function . The use of obstetrical anesthesia may increase the need for forceps assistance .

The use of some local anesthetic drug products during labor and delivery may be followed by diminished muscle strength and tone for the first day or two of life . The long-term significance of these observations is unknown . Fetal bradycardia may occur in 20 to 30 percent of patients receiving paracervical nerve block anesthesia with the amide-type local anesthetics and may be associated with fetal acidosis . Fetal heart rate should always be monitored during paracervical anesthesia . The physician should weigh the possible advantages against risks when considering a paracervical block in prematurity, toxemia of pregnancy, and fetal distress . Careful adherence to the recommended dosage is of the utmost importance in obstetrical paracervical block . Failure to achieve adequate analgesia with recommended doses should arouse suspicion of intravascular or fetal intracranial injection . Cases compatible with unintended fetal intracranial injection of local anesthetic solution have been reported following intended paracervical or pudendal block or both. Babies so affected present with unexplained neonatal depression at birth, which correlates with high local anesthetic serum levels, and often manifest seizures within six hours . Prompt use of supportive measures combined with forced urinary excretion of the local anesthetic has been used successfully to manage this complication .

It is not known whether this drug is excreted in human milk . Because many drugs are excreted in human milk, caution should be exercised when lidocaine is administered to a nursing woman .

Dosages in children should be reduced, commensurate with age, body weight and physical condition .

The oral LD 50 of lidocaine HCl in non-fasted female rats is 459 (346-773) mg/kg (as the salt) and 214 (159-324) mg/kg (as the salt) in fasted female rats .

Precaution

Patient with pseudocholinesterase deficiency, resp depression. Hepatic and renal impairment. Elderly or debilitated patients. Pregnancy and lactation.

Interaction

May increase serum levels with cimetidine and propranolol. Increased risk of cardiac depression with β-blockers and other antiarrhythmics. Additive cardiac effects with IV phenytoin. Hypokalaemia caused by acetazolamide, loop diuretics and thiazides may antagonise effect of lidocaine. Dose requirements may be increased with long-term use of phenytoin and other enzyme-inducers.

Food Interaction

No interactions found.

Drug Interaction

Moderate: alprazolam, alprazolamUnknown: diphenhydramine, diphenhydramine, pregabalin, pregabalin, polyethylene glycol 3350, polyethylene glycol 3350, albuterol, albuterol, acetaminophen, acetaminophen, cyanocobalamin, cyanocobalamin, ascorbic acid, ascorbic acid, cholecalciferol, cholecalciferol, ondansetron, ondansetron

Disease Interaction

Major: cardiovascular dysfunction, proarrhythmic effects, hepatic dysfunction, renal dysfunction, seizures, sinus/AV node dysfunctionModerate: electrolyte imbalance

Volume of Distribution

The volume of distribution determined for lidocaine is 0.7 to 1.5 L/kg .

In particular, lidocaine is distributed throughout the total body water . Its rate of disappearance from the blood can be described by a two or possibly even three-compartment model . There is a rapid disappearance (alpha phase) which is believed to be related to uptake by rapidly equilibrating tissues (tissues with high vascular perfusion, for example) . The slower phase is related to distribution to slowly equilibrating tissues (beta phase) and to its metabolism and excretion (gamma phase) .

Lignocaine's distribution is ultimately throughout all body tissues . In general, the more highly perfused organs will show higher concentrations of the agent . The highest percentage of this drug will be found in skeletal muscle, mainly due to the mass of muscle rather than an affinity .

Elimination Route

In general, lidocaine is readily absorbed across mucous membranes and damaged skin but poorly through intact skin . The agent is quickly absorbed from the upper airway, tracheobronchial tree, and alveoli into the bloodstream . And although lidocaine is also well absorbed across the gastrointestinal tract the oral bioavailability is only about 35% as a result of a high degree of first-pass metabolism . After injection into tissues, lidocaine is also rapidly absorbed and the absorption rate is affected by both vascularity and the presence of tissue and fat capable of binding lidocaine in the particular tissues .

The concentration of lidocaine in the blood is subsequently affected by a variety of aspects, including its rate of absorption from the site of injection, the rate of tissue distribution, and the rate of metabolism and excretion . Subsequently, the systemic absorption of lidocaine is determined by the site of injection, the dosage given, and its pharmacological profile . The maximum blood concentration occurs following intercostal nerve blockade followed in order of decreasing concentration, the lumbar epidural space, brachial plexus site, and subcutaneous tissue . The total dose injected regardless of the site is the primary determinant of the absorption rate and blood levels achieved . There is a linear relationship between the amount of lidocaine injected and the resultant peak anesthetic blood levels .

Nevertheless, it has been observed that lidocaine hydrochloride is completely absorbed following parenteral administration, its rate of absorption depending also on lipid solubility and the presence or absence of a vasoconstrictor agent . Except for intravascular administration, the highest blood levels are obtained following intercostal nerve block and the lowest after subcutaneous administration .

Additionally, lidocaine crosses the blood-brain and placental barriers, presumably by passive diffusion .

Half Life

The elimination half-life of lidocaine hydrochloride following an intravenous bolus injection is typically 1.5 to 2.0 hours . Because of the rapid rate at which lidocaine hydrochloride is metabolized, any condition that affects liver function may alter lidocaine HCl kinetics . The half-life may be prolonged two-fold or more in patients with liver dysfunction .

Clearance

The mean systemic clearance observed for intravenously administered lidocaine in a study of 15 adults was approximately 0.64 +/- 0.18 L/min .

Elimination Route

The excretion of unchanged lidocaine and its metabolites occurs predominantly via the kidney with less than 5% in the unchanged form appearing in the urine . The renal clearance is inversely related to its protein binding affinity and the pH of the urine . This suggests by the latter that excretion of lidocaine occurs by non-ionic diffusion .

Pregnancy & Breastfeeding use

Category B: Either animal-reproduction studies have not demonstrated a foetal risk but there are no controlled studies in pregnant women or animal-reproduction studies have shown an adverse effect (other than a decrease in fertility) that was not confirmed in controlled studies in women in the 1st trimester (and there is no evidence of a risk in later trimesters).

Contraindication

Hypovolaemia, complete heart block, Adam-Stokes syndrome, Wolff-Parkinson-White syndrome. Must not be applied to inflamed or injured skin.

Special Warning

Hepatic Impairment Parenteral: Dosage reduction may be needed.

Acute Overdose

Symptoms: Severe hypotension, asystole, bradycardia, apnoea, seizures, coma, cardiac arrest, resp arrest and death.

Management: Maintain oxygenation, stop convulsion and support the circulation.

Storage Condition

Store below 25°C.

Innovators Monograph

Lignocaine contains Lidocaine see full prescribing information from innovator Monograph, MSDS, FDA label

FAQ

What is Lignocaine used for?

Lignocaine is used to numb an area of your body to help reduce pain or discomfort caused by invasive medical procedures such as surgery, needle punctures, or insertion of a catheter or breathing tube.

How safe is Lignocaine?

When used sparingly and as directed, topical barnd is generally safe. However, misuse, overuse, or overdose can lead to a number of serious health problems and even death. Ingestion of Lignocaine can cause numbness of the mouth and throat, which can lead to trouble swallowing and even choking.

How does Lignocaine work?

Lignocaine works by stopping nerves from sending pain signals to your brain.

What are the common side effects of Lignocaine?

Common side effects of Lignocaine are include:

  • Bluish-colored lips, fingernails, or palms blurred or double vision.
  • chest pain or discomfort.
  • cold, clammy, pale skin.
  • continuing ringing or buzzing or other unexplained noise in the ears.
  • difficulty breathing.
  • difficulty swallowing.
  • dizziness or lightheadedness.

Is Lignocaine safe during pregnancy?

Lignocaine may be considered relatively safe for use in pregnant women.

Is Lignocaine safe during breastfeeding?

Lignocaine have extensive documented use in nursing mothers and are the preferred injectable local anesthetics during breastfeeding.

Can I drink alcohol with Lignocaine?

Do not drink alcohol while you are being given Lignocaine Injection. If you drink alcohol while you are being given Lignocaine Injection, your blood pressure may drop making you feel dizzy and faint.

Can I drive after taking Lignocaine?

Unless absolutely necessary, do not drive after receiving Lignocaine injection.

When should be taken of Lignocaine?

Lignocaine viscous usually is used as needed but not more frequently than every 3 hours, with a maximum of 8 doses in 24 hours.

How do you take Lignocaine?

If you have sores or irritation in your throat, you can gargle the viscous Lignocaine in the back of your throat and swallow. If you have pain in both your mouth and down your throat, swish the viscous Lignocaine  in your mouth, then gargle and swallow. Do not take two doses at one time.

Does Lignocaine help me sleep?

Patients treated with 5% Lignocaine had less trouble falling asleep, used less sleep medication.

Who should not use Lignocaine?

You should not use Lignocaine topical if you are allergic to any type of numbing medicine. Fatal overdoses have occurred when numbing medicines were used without the advice of a medical doctor.

How long does Lignocaine last in my system?

In as little as four minutes and can last from 30 minutes up to three hours. Other factors can play a role in how long the drug's effects last. It's a fast-acting local anesthetic. While its effects normally last for 30 to 60 minutes, it can last much longer if administered alongside epinephrine.

How much Lignocaine can I use?

Adults dose is based on body weight and must be determined by your doctor. The dose is usually 15 milliliters tablespoonful every 3 hours. Your doctor may adjust your dose as needed. Do not use more than 8 doses in a 24-hour period.

Can Lignocaine cause nerve damage?

Ester local anesthetics and carbonated lidocaine produce widespread and severe damage of the nerve fibers and the blood-nerve barriers when injected within the fascicles.

Is Lignocaine a good pain reliever?

Lignocaine helps to reduce sharp/burning/aching pain as well as discomfort caused by skin areas that are overly sensitive to touch.

Can Lignocaine cause a stroke?

We describe a patient in whom a Lignocaine bolus and drip successfully abolished ventricular arrhythmias who was then administered concurrent amiodarone. This precipitated severe neurologic deterioration suggesting stroke.

Can Lignocaine cause heart failure?

Antiarrhythmics cardiovascular dysfunction. Antiarrhythmic agents can induce severe hypotension or induce or worsen congestive heart failure.

Is Lignocaine bad for my liver?

Lignocaine metabolising capacity of the liver was irrespective of etiology of cirrhosis.

How long can you use Lignocaine for?

Do not wear the patch for longer than 12 hours in any 24-hour period.

What happen if I overdose of Lignocaine?

If you think there has been an overdose, call your poison control center or get medical care right away. Be ready to tell or show what was taken, how much, and when it happened.

What happens if I miss a dose of Lignocaine?

If you use Lignocaine patch on a regular basis, use a missed dose as soon as you think about it.If it is close to the time for your next dose, skip the missed dose and go back to your normal time.Do not put on 2 doses at the same time or extra doses.

Will Lignocaine affect my fertility?

Studies have not been done to see if Lignocaine could make it harder to get pregnant. An experimental animal study did not find that Lignocaine would affect fertility.

http://classyfire.wishartlab.com/tax_nodes/C0000000
http://classyfire.wishartlab.com/tax_nodes/C0002448
http://classyfire.wishartlab.com/tax_nodes/C0002279
http://classyfire.wishartlab.com/tax_nodes/C0004208
http://classyfire.wishartlab.com/tax_nodes/C0004209
http://classyfire.wishartlab.com/tax_nodes/C0002239
http://classyfire.wishartlab.com/tax_nodes/C0003633
http://classyfire.wishartlab.com/tax_nodes/C0002484
http://classyfire.wishartlab.com/tax_nodes/C0004557
http://classyfire.wishartlab.com/tax_nodes/C0000323
http://classyfire.wishartlab.com/tax_nodes/C0004150
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:6456
http://www.hmdb.ca/metabolites/HMDB0014426
http://www.genome.jp/dbget-bin/www_bget?drug:D00358
http://www.genome.jp/dbget-bin/www_bget?cpd:C07073
https://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=3676
https://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=46505060
https://www.chemspider.com/Chemical-Structure.3548.html
http://www.bindingdb.org/bind/chemsearch/marvin/MolStructure.jsp?monomerid=50017662
https://mor.nlm.nih.gov/RxNav/search?searchBy=RXCUI&searchTerm=6387
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=6456
https://www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL79
https://zinc.docking.org/substances/ZINC000000020237
http://bidd.nus.edu.sg/group/cjttd/ZFTTDDRUG.asp?ID=DAP000121
http://www.pharmgkb.org/drug/PA450226
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2623
https://www.ebi.ac.uk/pdbe-srv/pdbechem/chemicalCompound/show/LQZ
http://www.rxlist.com/cgi/generic2/xylocaineinj.htm
https://www.drugs.com/cdi/lidocaine-gel.html
https://en.wikipedia.org/wiki/Lidocaine
*** Taking medicines without doctor's advice can cause long-term problems.
Share