Lutaup

Lutaup Uses, Dosage, Side Effects, Food Interaction and all others data.

A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides.

Selenium is a trace metal in the human body particularly important as a component of glutathione peroxidase, an important enzyme in the prevention of cellular damage by free radicals and reactive oxygen species

Selenium is incorporated into many different selenoproteins which serve various functions throughout the body .

Trade Name Lutaup
Generic Glutathione + L-cysteine + Selenium + Vitamin C / Ascorbic Acid
Weight 500mg
Type Sachet
Therapeutic Class
Manufacturer Alniche Life Sciences Pvt Ltd
Available Country India
Last Updated: September 19, 2023 at 7:00 am
Lutaup
Lutaup

Uses

For nutritional supplementation, also for treating dietary shortage or imbalance

Selenium is an ingredient found in a variety of supplements and vitamins.

For the supplementation of total parenteral nutrition to prevent hyposelenemia .

Lutaup is also used to associated treatment for these conditions: Hangover, Nerve Disorders, NeuropathiesNutritional supplementation

How Lutaup works

Glutathione (GSH) participates in leukotriene synthesis and is a cofactor for the enzyme glutathione peroxidase. It also plays a role in the hepatic biotransformation and detoxification process; it acts as a hydrophilic molecule that is added to other lipophilic toxins or wastes prior to entering biliary excretion. It participates in the detoxification of methylglyoxal, a toxic by-product of metabolism, mediated by glyoxalase enzymes. Glyoxalase I catalyzes the conversion of methylglyoxal and reduced glutathione to S-D-Lactoyl-glutathione. Glyoxalase II catalyzes the conversion of S-D-Lactoyl Glutathione to Reduced Glutathione and D-lactate. Glyoxalase I catalyzes the conversion of methylglyoxal and reduced glutathione to S-D-Lactoyl-glutathione. Glyoxalase II catalyzes the conversion of S-D-Lactoyl Glutathione to Reduced Glutathione and D-lactate. GSH is a cofactor of conjugation and reduction reactions that are catalyzed by glutathione S-transferase enzymes expressed in the cytosol, microsomes, and mitochondria. However, it is capable of participating in non-enzymatic conjugation with some chemicals, as it is hypothesized to do to a significant extent with n-acetyl-p-benzoquinone imine (NAPQI), the reactive cytochrome P450 reactive metabolite formed by toxic overdose of acetaminophen. Glutathione in this capacity binds to NAPQI as a suicide substrate and in the process detoxifies it, taking the place of cellular protein sulfhydryl groups which would otherwise be toxically adducted. The preferred medical treatment to an overdose of this nature, whose efficacy has been consistently supported in literature, is the administration (usually in atomized form) of N-acetylcysteine, which is used by cells to replace spent GSSG and allow a usable GSH pool.

Selenium is first metabolized to selenophosphate and selenocysteine. Selenium incorporation is genetically encoded through the RNA sequence UGA . This sequence is recognized by RNA ste loop structures called selenocysteine inserting sequences (SECIS). These structures require the binding of SECIS binding proteins (SBP-2) to recognize selenocystiene. The specialized tRNA is first bound to a serine residue which is then enzymatically processed to a selylcysteyl-tRNA by selenocystiene sythase using selenophosphate as a selenium donor. Other unidentified proteins are required as part of the binding of this tRNA to the ribosome. Selenoproteins appear to be necessary for life as mice with the specialized tRNA gene knocked out exhibited early embryonic lethality .

The most important selenoproteins seem to be the glutathione peroxidases and thioredoxin reductases which are part of the body's defenses againts reactive oxygen species (ROS) . The importance of selenium in these anti-oxidant proteins has been implicated in the reduction of atherosclerosis by preventing the oxidation of low density lipoprotein . Selenium supplementation is also being investigated in the prevention of cancer and has been suggested to be beneficial to immune function .

Toxicity

ORL-MUS LD50 5000 mg/kg, IPR-MUS LD50 4020 mg/kg, SCU-MUS LD50 5000 mg/kg, IVN-RBT LD50 > 2000 mg/kg, IMS-MUS LD50 4000 mg/kg

Oral LD50 of 6700mg/kg in rats . Selenium exposure is teratogenic and can result in fetal death as tested in mice. Chronic toxicity is characterized by hair loss, white horizontal streaking on fingernails, paronchyia, fatigue, irritability, hyperreflexia, nausea, vomiting, garlic odor on breath, and metallic taste . Serum selenium correlates weakly with symtoms. Blood chemistry as well as liver and kidney function are normally unnaffected. Acute toxicity presents as stupor, respiratory depression, and hypotension. ST elevations and t-wave changes characteristic of myocardial infarction may be observed.

Elimination Route

Research suggests that glutathione is not orally bioactive, and that very little of oral glutathione tablets or capsules is actually absorbed by the body.

Oral bioavailability of 90% when given as L-selenomethionine . Tmax of 9.17h.

Half Life

Half life was observed to increase with chronic dosing time . For day 1-2 half life was 1.7 days. For day 2-3 half life was 3 days. For day 3-14 half life was 11.1 days.

Elimination Route

Mainly excreted in urine as 1beta-methylseleno-N-acetyl-d-galactosamine and trimethylselenonium . The amount excreted as 1beta-methylseleno-N-acetyl-d-galactosamine plateaus at doses around 2microg after which the amount excreted as trimethylselenonium increases. Some selenium is also excreted in feces when given orally .

Innovators Monograph

You find simplified version here Lutaup


*** Taking medicines without doctor's advice can cause long-term problems.
Share