Megazing
Megazing Uses, Dosage, Side Effects, Food Interaction and all others data.
Folic acid is essential for the production of certain coenzymes in many metabolic systems such as purine and pyrimidine synthesis. It is also essential in the synthesis and maintenance of nucleoprotein in erythropoesis. It also promotes WBC and platelet production in folate-deficiency anaemia.
Folic acid is a water-soluble B-complex vitamin found in foods such as liver, kidney, yeast, and leafy, green vegetables. Also known as folate or Vitamin B9, folic acid is an essential cofactor for enzymes involved in DNA and RNA synthesis. More specifically, folic acid is required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. Folic acid is the precursor of tetrahydrofolic acid, which is involved as a cofactor for transformylation reactions in the biosynthesis of purines and thymidylates of nucleic acids. Impairment of thymidylate synthesis in patients with folic acid deficiency is thought to account for the defective deoxyribonucleic acid (DNA) synthesis that leads to megaloblast formation and megaloblastic and macrocytic anemias. Folic acid is particularly important during phases of rapid cell division, such as infancy, pregnancy, and erythropoiesis, and plays a protective factor in the development of cancer. As humans are unable to synthesize folic acid endogenously, diet and supplementation is necessary to prevent deficiencies. In order to function properly within the body, folic acid must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted by anti-metabolite therapies such as Methotrexate as they function as DHFR inhibitors to prevent DNA synthesis in rapidly dividing cells, and therefore prevent the formation of DHF and THF.
In general, folate serum levels below 5 ng/mL indicate folate deficiency, and levels below 2 ng/mL usually result in megaloblastic anemia.
An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake.
Pantothenic acid, also called pantothenate or vitamin B5 (a B vitamin), is a water-soluble vitamin discovered by Roger J. Williams in 1919. For many animals, pantothenic acid is an essential nutrient as it is required to synthesize coenzyme-A (CoA), as well as to synthesize and metabolize proteins, carbohydrates, and fats. Pantothenic acid is the amide between pantoic acid and β-alanine and commonly found as its alcohol analog, the provitamin panthenol, and as calcium pantothenate. Small quantities of pantothenic acid are found in nearly every food, with high amounts in whole-grain cereals, legumes, eggs, meat, royal jelly, avocado, and yogurt. Pantothenic acid is an ingredient in some hair and skin care products. Only the dextrorotatory (D) isomer of pantothenic acid possesses biological activity. while the levorotatory (L) form may antagonize the effects of the dextrorotatory isomer.
Pantothenic acid is used in the synthesis of coenzyme A (CoA). CoA is thought to act as a carrier molecule, allowing the entry of acyl groups into cells. This is of critical importance as these acyl groups are used as substrates in the tricarboxylic acid cycle to generate energy and in the synthesis of fatty acids, cholesterol, and acetylcholine. Additionally, CoA is part of acyl carrier protein (ACP), which is required in the synthesis of fatty acids in addition to CoAs use as a substrate.
Pantothenic acid in the form of CoA is also required for acylation and acetylation, which, for example, are involved in signal transduction and enzyme activation and deactivation, respectively.
Vitamin E Capsule is a Vitamin E preparation. Vitamin E acts as an antioxidant in the body. Vitamin E protects polyunsaturated fatty acids (which are components of cellular membrane) and other oxygen-sensitive substances such as vitamin A & vitamin C from oxidation. Vitamin E reacts with free radicals, which is the cause of oxidative damage to cell membranes, without the formation of another free radical in the process. The main pharmacological action of vitamin E in humans is its antioxidant effect.
In premature neonates irritability, edema, thrombosis and hemolytic anemia may be caused due to vitamin E deficiency. Creatinuria, ceroid deposition, muscle weakness, decreased erythrocyte survival or increased in vitro hemolysis by oxidizing agents have been identified in adults and children with low serum tocopherol concentrations.
Vitamin E is a collective term used to describe 8 separate fat soluble antioxidants, most commonly alpha-tocopherol. Vitamin E acts to protect cells against the effects of free radicals, which are potentially damaging by-products of the body's metabolism. Vitamin E deficiency is seen in persons with abetalipoproteinemia, premature, very low birth weight infants (birth weights less than 1500 grams, or 3½ pounds), cystic fibrosis, and cholestasis and severe liver disease. Preliminary research suggests vitamin E may help prevent or delay coronary heart disease and protect against the damaging effects of free radicals, which may contribute to the development of chronic diseases such as cancer. It also protects other fat-soluble vitamins (A and B group vitamins) from destruction by oxygen. Low levels of vitamin E have been linked to increased incidence of breast and colon cancer.
Trade Name | Megazing |
Generic | Vitamin E + vitamin C + vitamin B1 + vitamin B2 + Nicotinamide + vitamin B6 + vitamin B12 + Folic Acid + Ca + Pantothenic acid + dan Zn |
Weight | 30iu, 750mg, 15mg, 15mg, 100mg, 25mg, 12mcg, 0.4mg, 20mg, 20mg, 20mg |
Type | Caplet |
Therapeutic Class | |
Manufacturer | Lapi |
Available Country | Indonesia |
Last Updated: | September 19, 2023 at 7:00 am |
Uses
Prophylaxis of megaloblastic anaemia in pregnancy, Supplement for women of child-bearing potential, Folate-deficient megaloblastic anaemia, Prophylaxis of neural tube defect in pregnancy
Nicotinamide is an ingredient found in a variety of cosmetic products.
Pantothenic acid is a vitamin B5 found in various nutritional supplements.
Studied for the treatment of many uses such as treatment of testicular torsion, diabetic ulceration, wound healing, acne, obesity, diabetic peripheral polyneuropathy. It has also been investigated for its hypolipidemic effects and as cholesterol lowering agent.
As a dietary supplement:
- Vitamin E deficiency resulting from impaired absorption.
- Increased requirements due to diet rich in polyunsaturated fats.
- For healthy hair & skin
- As an Antioxidant
- Hemolytic anemia due to Vitamin E deficiency
Therapeutic use
: Heavy metal poisoning, Hepatotoxin poisoning, Hemolytic anemia, Oxygen therapy and replacement therapy in nutritional deficiency states for the betterment of skin and hair.
Megazing is also used to associated treatment for these conditions: Anaemia folate deficiency, Folate deficiency, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Latent Iron Deficiency, Neural Tube Defects (NTDs), Vitamin Deficiency, Methotrexate toxicity, Nutritional supplementationGastrointestinal insufficiency, Hepatic Insufficiency, Macrocytic anemia, Secondary anemia, Vitamin Deficiency, Severe debilitation, Dietary and Nutritional Therapies, Nutritional supplementation, Dietary supplementationNutritional supplementationVitamin Deficiency, Long-chain omega-3 fatty acid supplementation, Dietary supplementation
How Megazing works
Folic acid, as it is biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by dihydrofolate reductase (DHFR). These folic acid congeners are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids, methylate tRNA, and generate and use formate. Using vitamin B12 as a cofactor, folic acid can normalize high homocysteine levels by remethylation of homocysteine to methionine via methionine synthetase.
Pantothenic acid is incorporated into COENZYME A and protects cells against peroxidative damage by increasing the level of GLUTATHIONE.
The mechanism of action for most of vitamin E's effects are still unknown. Vitamin E is an antioxidant, preventing free radical reactions with cell membranes. Though in some cases vitamin E has been shown to have pro-oxidant activity.
One mechanism of vitamin E's antioxidant effect is in the termination of lipid peroxidation. Vitamin E reacts with unstable lipid radicals, producing stable lipids and a relatively stable vitamin E radical. The vitamin E radical is then reduced back to stable vitamin E by reaction with ascorbate or glutathione.
Dosage
Megazing dosage
Supplement for women of child-bearing potential: 0.4 mg daily.
Folate-deficient megaloblastic anaemia: 5 mg daily for 4 mth, up to 15 mg daily in malabsorption states. Continued dosing at 5 mg every 1-7 days may be needed in chronic haemolytic states, depending on the diet and rate of haemolysis.
Prophylaxis of neural tube defect in pregnancy: 4 or 5 mg daily starting before pregnancy and continued through the 1st trimester.
Prophylaxis of megaloblastic anaemia in pregnancy: 0.2-0.5 mg daily.
Betterment of Cardiovascular health: 400 mg - 800 mg / day
Deficiency syndrome in adults: 200 mg - 400 mg / day
Deficiency syndrome in children: 200 mg / day
Thalassemia: 800 mg / day
Sickle-cell anemia: 400 mg / day
Betterment of Skin & Hair: 200 mg - 400 mg / day (Topical use is also established for beautification)
Chronic cold in adults: 200 mg / day
May be taken with or without food.
Side Effects
GI disturbances, hypersensitivity reactions; bronchospasm.
Overdoses (>1g) have been associated with minor side effects, including hypertension, fatigue, diarrhea and myopathy
Toxicity
IPR-MUS LD50 85 mg/kg,IVN-GPG LD50 120 mg/kg, IVN-MUS LD50 239 mg/kg, IVN-RAT LD50 500 mg/kg, IVN-RBT LD50 410 mg/kg
No Tolerable Upper Level Intake (UL) has been established for the vitamin.
There is no data available for effects in pregnancy, breast feeding, hepatic impairment, or renal impairment. However, it appears that the process of vitamin E elimination is strict and self regulating enough that vitamin E toxicity is exceedingly rare. Studies showing adverse effects from excess vitamin E generally involve people consuming more than 1000mg/day for weeks to months.
Precaution
Treatment resistance may occur in patients with depressed haematopoiesis, alcoholism, deficiencies of other vitamins. Neonates.
Vitamin E may enhance the anticoagulant activity of anticoagulant drugs. Caution is advised in premature infants with high dose Vitamin E supplementation, because of reported risk of necrotizing enterocilitis.
Interaction
Antiepileptics, oral contraceptives, anti-TB drugs, alcohol, aminopterin, methotrexate, pyrimethamine, trimethoprim and sulphonamides may result to decrease in serum folate contrations. Decreases serum phenytoin concentrations.
Vitamin E may impair the absorption of Vitamin A. Vitamin K functions impairement happens at the level of prothrombin formation and potentiates the effect of Warfarin.
Volume of Distribution
Tetrahydrofolic acid derivatives are distributed to all body tissues but are stored primarily in the liver.
0.41L/kg in premature neonates given a 20mg/kg intramuscular injection.
Elimination Route
Folic acid is absorbed rapidly from the small intestine, primarily from the proximal portion. Naturally occurring conjugated folates are reduced enzymatically to folic acid in the gastrointestinal tract prior to absorption. Folic acid appears in the plasma approximately 15 to 30 minutes after an oral dose; peak levels are generally reached within 1 hour.
Dietary pantothenic acid is primarily in the form of CoA or ACP and must be converted into free pantothenic acid for absorption. CoA and ACP are hydrolyzed into 4'-phosphopantetheine which is then dephosphorylated into pantetheine and subsequently hydrolyzed again to free pantothenic acid by Pantetheinase in the intestinal lumen. Free pantothenic acid is absorbed into intestinal cells via a saturable, sodium-dependent active transport system with passive diffusion acting as a secondary pathway. As intake increases up to 10-fold absorption rate can decrease to as low as 10% due to transporter saturation.
10-33% of deuterium labelled vitamin E is absorbed in the small intestine. Absorption of Vitamin E is dependant upon absorption of the fat in which it is dissolved. For patients with poor fat absorption, a water soluble form of vitamin E may need to be substituted such as tocopheryl polyethylene glycol-1000 succinate.
In other studies the oral bioavailability of alpha-tocopherol was 36%, gamma-tocotrienol was 9%. The time to maximum concentration was 9.7 hours for alpha-tocopherol and 2.4 hours for gamma-tocotrienol.
Half Life
44 hours in premature neonates given a 20mg/kg intramuscular injection. 12 minutes in intravenous injection of intestinal lymph.
Clearance
6.5mL/hr/kg in premature neonates given a 20mg/kg intramuscular injection.
Elimination Route
After a single oral dose of 100 mcg of folic acid in a limited number of normal adults, only a trace amount of the drug appeared in the urine. An oral dose of 5 mg in 1 study and a dose of 40 mcg/kg of body weight in another study resulted in approximately 50% of the dose appearing in the urine. After a single oral dose of 15 mg, up to 90% of the dose was recovered in the urine. A majority of the metabolic products appeared in the urine after 6 hours; excretion was generally complete within 24 hours. Small amounts of orally administered folic acid have also been recovered in the feces. Folic acid is also excreted in the milk of lactating mothers.
Alpha tocopherol is excreted in urine as well as bile in the feces mainly as a carboxyethyl-hydrochroman (CEHC) metabolite, but it can be excreted in it's natural form .
Pregnancy & Breastfeeding use
Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).
Use in pregnancy: Vitamin E may be used in pregnancy in the normally recommended dose but the safety of high dose therapy has not been established.
Use in lactation: There appears to be no contraindication to breast feeding by mothers taking the normally recommended dose.
Contraindication
Undiagnosed megaloblastic anaemia; pernicious, aplastic or normocytic anaemias.
No known contraindications found.
Special Warning
Use in Children: Vitamin E is safe for children
Acute Overdose
Large doses of vitamin E (more than 1 gm/day) have been reported to increase bleeding tendency in vitamin K deficient patients such as those taking oral anticoagulants.
Storage Condition
Store at 15-30° C.
Store at a cool and dry place, Protect from light and moisture.
Innovators Monograph
You find simplified version here Megazing