Mucinex Fast-max Night Time Cold And Flu Uses, Dosage, Side Effects and more
Mucinex Fast-max Night Time Cold And Flu Uses, Dosage, Side Effects, Food Interaction and all others data.
Diphenhydramine is an antihistamine with anticholinergic and sedative effects. It competes with histamine for H1-receptor sites on effector cells in the GI tract, blood vessels and respiratory tract.
Diphenhydramine has anti-histaminic (H1-receptor), anti-emetic, anti-vertigo and sedative and hypnotic properties . The anti-histamine action occurs by blocking the spasmogenic and congestive effects of histamine by competing with histamine for H1 receptor sites on effector cells, preventing but not reversing responses mediated by histamine alone . Such receptor sites may be found in the gut, uterus, large blood vessels, bronchial muscles, and elsewhere . Anti-emetic action is by inhibition at the medullary chemoreceptor trigger zone . Anti-vertigo action is by a central antimuscarinic effect on the vestibular apparatus and the integrative vomiting center and medullary chemoreceptor trigger zone of the midbrain .
Paracetamol exhibits analgesic action by peripheral blockage of pain impulse generation. It produces antipyresis by inhibiting the hypothalamic heat-regulating centre. Its weak anti-inflammatory activity is related to inhibition of prostaglandin synthesis in the CNS.
Paracetamol (Acetaminophen) is thought to act primarily in the CNS, increasing the pain threshold by inhibiting both isoforms of cyclooxygenase, COX-1, COX-2, and COX-3 enzymes involved in prostaglandin (PG) synthesis. Unlike NSAIDs, acetaminophen does not inhibit cyclooxygenase in peripheral tissues and, thus, has no peripheral anti-inflammatory affects. While aspirin acts as an irreversible inhibitor of COX and directly blocks the enzyme's active site, studies have found that acetaminophen indirectly blocks COX, and that this blockade is ineffective in the presence of peroxides. This might explain why acetaminophen is effective in the central nervous system and in endothelial cells but not in platelets and immune cells which have high levels of peroxides. Studies also report data suggesting that acetaminophen selectively blocks a variant of the COX enzyme that is different from the known variants COX-1 and COX-2. This enzyme is now referred to as COX-3. Its exact mechanism of action is still poorly understood, but future research may provide further insight into how it works. The antipyretic properties of acetaminophen are likely due to direct effects on the heat-regulating centres of the hypothalamus resulting in peripheral vasodilation, sweating and hence heat dissipation.
Phenylephrine is an alpha-1 adrenergic receptor agonist used to treat hypotension, dilate the pupil, and induce local vasoconstriction. The action of phenylephrine, or neo-synephrine, was first described in literature in the 1930s.
Phenylephrine was granted FDA approval in 1939.
Phenylephrine is an alpha-1 adrenergic agonist that raises blood pressure, dilates the pupils, and causes local vasoconstriction. Ophthalmic formulations of phenylephrine act for 3-8 hours while intravenous solutions have an effective half life of 5 minutes and an elimination half life of 2.5 hours. Patients taking ophthalmic formulations of phenylephrine should be counselled about the risk of arrhythmia, hypertension, and rebound miosis. Patients taking an intravenous formulation should be counselled regarding the risk of bradycardia, allergic reactions, extravasation causing necrosis or tissue sloughing, and the concomitant use of oxytocic drugs.
Trade Name | Mucinex Fast-max Night Time Cold And Flu |
Generic | Paracetamol + diphenhydramine + phenylephrine |
Type | Oral liquid, oral powder for reconstitution, oral syrup, oral tablet |
Therapeutic Class | |
Manufacturer | |
Available Country | United States |
Last Updated: | January 7, 2025 at 1:49 am |
Uses
Diphenhydramine is used for the treatment of followings:
- Seasonal, perennial, vasomotor rhinitis
- Urticaria, angioneurotic oedema, anaphylaxis
- Pruiritic conditions
- Premedication for emesis and motion sickness
- Miscellaneous like meniere's disease and parkinsonism
Paracetamol IV is used for the management of mild to moderate pain, the management of moderate to severe pain with adjunctive opioid analgesics, the reduction of fever.
Paracetamol is a non-salicylate antipyretic and non-opioid analgesic agent. Paracetamol IV injection is a sterile, clear, colorless, non pyrogenic, isotonic formulation of Paracetamol intended for intravenous infusion.
Phenylephrine is an alpha-1 adrenergic agonist used in the management of hypotension, generally in the surgical setting associated with the use of anesthetics.
Phenylephrine injections are indicated to treat hypotension caused by shock or anesthesia, an ophthalmic formulation is indicated to dilate pupils and induce vasoconstriction, an intranasal formulation is used to treat congestion, and a topical formulation is used to treat hemorrhoids. Off-label uses include situations that require local blood flow restriction such as the treatment of priapism.
Mucinex Fast-max Night Time Cold And Flu is also used to associated treatment for these conditions: Allergic Rhinitis (AR), Allergic cough, Allergies, Anaphylaxis, Angioedema, Common Cold, Common Cold/Flu, Conjunctival irritation, Cough, Cough Variant Asthma, Cough caused by Common Cold, Eye allergy, Fever, Insect Bites, Insect Stings, Insomnia, Irritative cough, Itching of the nose, Itching of the throat, Motion Sickness, Nasal Congestion, Oral Mucositis, Pain, Parkinsonian Syndromes, Pollen Allergy, Productive cough, Pruritus, Rash, Rhinorrhoea, Sinus Congestion, Sinus headache, Skin Irritation, Sneezing, Sunburn, Symptoms of Acute Bronchitis Accompanied by Coughing, Upper respiratory tract hypersensitivity reaction, site unspecified, Urticaria, Dermatographism, Dry cough, Watery itchy eyes, Airway secretion clearance therapy, ExpectorantAcute Gouty Arthritis, Acute Musculoskeletal Pain, Allergies, Ankylosing Spondylitis (AS), Arthritis, Chills, Cold, Cold Symptoms, Common Cold, Common Cold/Flu, Cough, Cough caused by Common Cold, Coughing caused by Flu caused by Influenza, Dyskinesia of the Biliary Tract, Dyskinesia of the Urinary Tract, Febrile Convulsions, Febrile Illness Acute, Fever, Fibromyalgia Syndrome, Flu caused by Influenza, Headache, Joint dislocations, Menstrual Distress (Dysmenorrhea), Mild pain, Muscle Inflammation, Muscle Injuries, Muscle Spasms, Musculoskeletal Pain, Nasal Congestion, Neuralgia, Osteoarthritis (OA), Pain, Pollen Allergy, Postoperative pain, Premenstrual cramps, Rheumatoid Arthritis, Rhinopharyngitis, Rhinorrhoea, Severe Pain, Sinusitis, Soreness, Muscle, Spasms, Spastic Pain of the Gastrointestinal Tract, Sprains, Tension Headache, Toothache, Upper Respiratory Tract Infection, Whiplash Syndrome, Acute Torticollis, Mild to moderate pain, Minor aches and pains, Minor pain, Moderate Pain, Airway secretion clearance therapy, Antispasmodic, BronchodilationAllergic Rhinitis (AR), Anorectal discomfort, Cold, Common Cold, Common Cold/Flu, Congestion of the Conjunctivas, Conjunctivitis allergic, Cough, Cough caused by Common Cold, Eye allergy, Eye redness, Fever, Flu caused by Influenza, Headache, Headache caused by Allergies, Headache caused by Common Cold, Headache caused by Pollen Allergy, Hemorrhoids, Hypotension, Irritative cough, Itching of the nose, Itching of the throat, Laryngotracheitis, Nasal Congestion, Nose discomfort, Ocular Inflammation, Ocular Irritation, Paroxysmal Supraventricular Tachycardia, Pollen Allergy, Respiratory tract congestion, Respiratory tract irritation, Rhinopharyngitis, Rhinorrhoea, Seasonal Allergies, Shock, Cardiogenic, Sinus Congestion, Sinus pressure, Sinusitis, Sneezing, Sore Throat, Tracheobronchitis, Upper respiratory tract hypersensitivity reaction, site unspecified, Vasomotor Rhinitis, Aching caused by Flu caused by Influenza, Bronchial congestion, Itchy throat, Minor aches and pains, Watery itchy eyes, Airway secretion clearance therapy, Antihistamine, Dilatation of the pupil, Vasoconstrictor in regional analgesia therapy
How Mucinex Fast-max Night Time Cold And Flu works
Diphenhydramine predominantly works via the antagonism of H1 (Histamine 1) receptors . Such H1 receptors are located on respiratory smooth muscles, vascular endothelial cells, the gastrointestinal tract (GIT), cardiac tissue, immune cells, the uterus, and the central nervous system (CNS) neurons . When the H1 receptor is stimulated in these tissues it produces a variety of actions including increased vascular permeability, promotion of vasodilation causing flushing, decreased atrioventricular (AV) node conduction time, stimulation of sensory nerves of airways producing coughing, smooth muscle contraction of bronchi and the GIT, and eosinophilic chemotaxis that promotes the allergic immune response .
Ultimately, diphenhydramine functions as an inverse agonist at H1 receptors, and subsequently reverses effects of histamine on capillaries, reducing allergic reaction symptoms . Moreover, since diphenhydramine is a first-generation antihistamine, it readily crosses the blood-brain barrier and inversely agonizes the H1 CNS receptors, resulting in drowsiness, and suppressing the medullary cough center .
Furthermore, H1 receptors are similar to muscarinic receptors . Consequently, diphenhydramine also acts as an antimuscarinic . It does so by behaving as a competitive antagonist of muscarinic acetylcholine receptors, resulting in its use as an antiparkinson medication .
Lastly, diphenhydramine has also demonstrated activity as an intracellular sodium channel blocker, resulting in possible local anesthetic properties .
Phenylephrine is an alpha-1 adrenergic agonist that mediates vasoconstriction and mydriasis depending on the route and location of administration. Systemic exposure to phenylephrine also leads to agonism of alpha-1 adrenergic receptors, raising systolic and diastolic pressure as well as peripheral vascular resistance. Increased blood pressure stimulates the vagus nerve, causing reflex bradycardia.
Dosage
Mucinex Fast-max Night Time Cold And Flu dosage
Adult-
- Most allergic conditions: 25-50 mg three times a day with a further 50 mg at night.
Children-
- 1 to 5 years of age: 5 mg i.e., 2.5 ml of elixir 4 times a day
- More than 6 years of age: 10 mg i.e. 5 ml of elixir 4 times a day
Adults and adolescents weighing 50 kg and over: the recommended dosage of Paracetamol IV is 1000 mg every 6 hours or 650 mg every 4 hours, with a maximum single dose of Paracetamol IV of 1000 mg, a minimum dosing interval of 4 hours, and a maximum daily dose of Paracetamol of 4000 mg per day.
Adults and adolescents weighing under 50 kg: the recommended dosage of Paracetamol IV is 15 mg/kg every 6 hours or 12.5 mg/kg every 4 hours, with a maximum single dose of Paracetamol IV of 15 mg/kg, a minimum dosing interval of 4 hours, and a maximum daily dose of Paracetamol of 75 mg/kg per day.
Children >2 to 12 years of age: the recommended dosage of Paracetamol IV is 15 mg/kg every 6 hours or 12.5 mg/kg every 4 hours, with a maximum single dose of Paracetamol IV of 15 mg/kg, a minimum dosing interval of 4 hours, and a maximum daily dose of Paracetamol of 75 mg/kg per day.
Side Effects
Side effect includes sedation, dizziness, tinnitus, fatigue, ataxia, blurred vision, diplopia, euphoria, and epigastric discomfort.
As all paracetamol products, adverse drug reactions are rare (>1/10000, <1/1000) or very rare (<1/10000). Frequent adverse reactions at injection site have been reported during clinical trials (pain and burning sensation). Very rare cases of hypersensitivity reactions ranging from simple skin rash or urticaria to anaphylactic shock have been reported and require discontinuation of treatment. Cases of erythema, flushing, pruritus and tachycardia have been reported.
Toxicity
Overdose is expected to result in effects similar to the adverse effects that are ordinarily associated with the use of diphenhydramine, including drowsiness, hyperpyrexia, and anticholinergic effects, among others . Additional symptoms during overdose may include mydriasis, fever, flushing, agitation, tremor, dystonic reactions, hallucinations and ECG changes . Large overdose may cause rhabdomyolysis, convulsions, delirium, toxic psychosis, arrhythmias, coma and cardiovascular collapse . Moreover, with higher doses, and particularly in children, symptoms of CNS excitation including hallucinations and convulsions may appear; with massive doses, coma or cardiovascular collapse may follow .
Although diphenhydramine has been in widespread use for many years without ill consequence, it is known to cross the placenta and has been detected in breast milk . This medication should therefore only be used when the potential benefit of treatment to the mother exceeds any possible hazards to the developing fetus or suckling infant .
Pharmacokinetic studies indicate no major differences in the distribution or elimination of diphenhydramine compared to younger adults . Nevertheless, diphenhydramine should be used with caution in the elderly, who are more likely to experience adverse effects . Avoid use in elderly patients with confusion .
The results of a review on the use of diphenhydramine in renal failure suggest that in moderate to severe renal failure, the dose interval should be extended by a period dependent on Glomerular filtration rate (GFR) .
After intravenous administration of 0.8 mg/kg diphenhydramine, a prolonged half-life was noted in patients with chronic liver disease which correlated with the severity of the disease . However, the mean plasma clearance and apparent volume of distribution were not significantly affected .
LD50=500 mg/kg (orally in rats). Considerable overdosage can lead to myocardial infarction (heart attack), serious ventricular dysrhythmias, coma and death.
Patients experiencing and overdose may present with headache, hypertension, reflex bradycardia, tingling limbs, cardiac arrhythmias, and a feeling of fullness in the head. Overdose may be treated by supportive care and discontinuing phenylephrine, chronotropic medications, and vasodilators. Subcutaneous phentolamine may be used to treat tissue extravasation.
Precaution
Caution should be exercised with patients in whom drowsiness is undesirable e.g., drivers, machine operators. Concomitant consumption of alcohol or central nervous system (CNS) depressants will potentiate drowsiness.
Administration of Paracetamol in doses higher than recommended may result in hepatic injury, including the risk of severe hepatotoxicity and death. Do not exceed the maximum recommended daily dose of Paracetamol. Use caution when administering Paracetamol in patients with the following conditions: hepatic impairment or active hepatic disease, alcoholism, chronic malnutrition, severe hypovolemia (e.g., due to dehydration or blood loss), or severe renal impairment (creatinine clearance < 30 ml/min). There were infrequent reports of life-threatening anaphylaxis requiring emergent medical attention. Discontinue Paracetamol IV immediately if symptoms associated with allergy or hypersensitivity occurs. Do not use Paracetamol IV in patients with Paracetamol allergy.
Interaction
Diphenhydramine administration significantly reduces the absorption of the antituberculous agent para-aminosalicyclic acid (PAS) from the gastrointestinal tract. CNS depressants may potentiate the sedative action of Diphenhydramine. Anticholinergic drugs may potentiate Diphenhydramine’s anticholinergic side effects.
Volume of Distribution
Diphenhydramine is widely distributed throughout the body, including the CNS . Following a 50 mg oral dose of diphenhydramine, the volume of distribution is in the range of 3.3 - 6.8 l/kg .
Volume of distribution is about 0.9L/kg. 10 to 20% of the drug is bound to red blood cells. Acetaminophen appears to be widely distributed throughout most body tissues except in fat.
The volume of distribution of phenylephrine is 340L.
Elimination Route
Diphenhydramine is quickly absorbed after oral administration with maximum activity occurring in approximately one hour . The oral bioavailability of diphenhydramine has been documented in the range of 40% to 60%, and peak plasma concentration occurs about 2 to 3 hours after administration .
Phenylephrine is 38% orally bioavailable. Clinically significant systemic absorption of ophthalmic formulations is possible, especially at higher strengths and when the cornea is damaged.
Half Life
The elimination half-life ranges from 2.4-9.3 hours in healthy adults . The terminal elimination half-life is prolonged in liver cirrhosis .
The half-life for adults is 2.5 h after an intravenous dose of 15 mg/kg. After an overdose, the half-life can range from 4 to 8 hours depending on the severity of injury to the liver, as it heavily metabolizes acetaminophen.
Intravenous phenylephrine has an effective half life of 5 minutes and an elimination half life of 2.5 hours.
Clearance
Values for plasma clearance of a 50 mg oral dose of diphenhydramine has been documented as lying in the range of 600-1300 ml/min .
Adults: 0.27 L/h/kg following a 15 mg/kg intravenous (IV) dose. Children: 0.34 L/h/kg following a 15 mg/kg intravenous (IV dose).
Phenylephrine has an average clearance of 2100mL/min.
Elimination Route
The metabolites of diphenhydramine are conjugated with glycine and glutamine and excreted in urine . Only about 1% of a single dose is excreted unchanged in urine . The medication is ultimately eliminated by the kidneys slowly, mainly as inactive metabolites .
86% of a dose of phenylephrine is recovered in the urine with 16% as the unmetabolized drug, 57% as the inactive meta-hydroxymendelic acid, and 8% as inactive sulfate conjugates.
Pregnancy & Breastfeeding use
Category B: There are no adequate and well controlled studies in pregnant women using diphenhydramine hydrochloride. Therefore, diphenhydramine hydrochloride should be used in pregnancy only if clearly needed. Diphenhydramine hydrochloride has been reported to be excreted in breast milk and thus, use of diphenhydramine hydrochloride in lactating mother is not recommended.
Pregnancy Category C. There are no studies of intravenous Paracetamol in pregnant women; however, epidemiological data on oral Paracetamol use in pregnant women show no increased risk of major congenital malformations. Animal reproduction studies have not been conducted with IV Paracetamol and it is not known whether Paracetamol IV can cause fetal harm when administered to a pregnant woman. Paracetamol IV should be given to a pregnant woman only if clearly needed. There are no adequate and well-controlled studies with Paracetamol IV during labor and delivery; therefore, it should be used in such settings only after a careful benefit-risk assessment. While studies with Paracetamol IV have not been conducted, Paracetamol is secreted in human milk in small quantities after oral administration.
Contraindication
Known hypersensitivity to Diphenhydramine Hydrochloride, Ammonium chloride is contra-indicated in presence of impaired hepatic or renal function.
Paracetamol is contraindicated in patients with known hypersensitivity to its active ingredient or to any of the excipients in the intravenous formulation. Also contraindicated in patients with severe hepatic impairment or severe active liver disease
Special Warning
Pediatric Use: The safety and effectiveness of Paracetamol IV for the treatment of acute pain and fever in pediatric patients ages 2 years and older is supported by evidence from adequate and well-controlled studies of Paracetamol IV in adults.
Geriatric use: No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients.
Patients with Hepatic Impairment: Paracetamol is contraindicated in patients with severe hepatic impairment or severe active liver disease and should be used with caution in patients with hepatic impairment or active liver disease. A reduced total daily dose of Paracetamol may be warranted.
Patients with Renal Impairment: In cases of severe renal impairment (creatinine clearance < 30 ml/min), longer dosing intervals and a reduced total daily dose of Paracetamol may be warranted.
Acute Overdose
Symptoms: Impaired consciousness; psychosis, seizures, antimuscarinic symptoms (e.g. mydriasis, tachycardia, tachyarrhythmias), resp failure, rhabdomyolysis; acute delirium with visual and auditory hallucination (topical).
Management: Supportive and symptomatic treatment. Convulsions and marked CNS stimulation may be treated with IV diazepam.
Storage Condition
Store between 15-30° C. Protect from moisture.
Store in a cool & dry place & away from children. For single use only. The product should be used within 6 hours after opening. Do not refrigerate or freeze.