N-Isopropylnoradrenaline

N-Isopropylnoradrenaline Uses, Dosage, Side Effects, Food Interaction and all others data.

N-Isopropylnoradrenaline is a non-selective beta adrenergic receptor agonist indicated to treat heart block, Adams-Stokes attacks, bronchospasm in anesthesia, cadiac arrest, hypovolemic shocks, septic shock, hypoperfusion, congestive hear failure, and cardiogenic shock.

N-Isopropylnoradrenaline research in the 1940s found that this isopropyl analog of epinephrine dilated the bronchi, as well as raising the heart rate and cardiac output, without vasoconstriction. The US patent from 1943 states that this compound had a wider therapeutic index and a stronger action than adrenaline.

N-Isopropylnoradrenaline was granted FDA approval on 19 February 1948.

Trade Name N-Isopropylnoradrenaline
Generic Isoprenaline
Isoprenaline Other Names Isoprenalina, Isoprenaline, Isoprénaline, Isoprenalinum, Isopropyl noradrenaline, Isoproterenol, N-Isopropylnoradrenaline, N-Isopropylnorepinephrine
Type
Formula C11H17NO3
Weight Average: 211.2576
Monoisotopic: 211.120843415
Protein binding

Isoprenaline is 68.8 ± 1.2% protein bound in plasma, mainly to serum albumin.

Groups Approved, Investigational
Therapeutic Class
Manufacturer
Available Country
Last Updated: September 19, 2023 at 7:00 am
N-Isopropylnoradrenaline
N-Isopropylnoradrenaline

Uses

N-Isopropylnoradrenaline is a catecholamine non-selective beta-adrenergic agonist typically used to treat bradycardia and heart block.

N-Isopropylnoradrenaline is indicated to treat mild or transient episodes of heart block not requiring electric shock or pacemakers, serious episodes of heart block and Adams-Stokes attacks not caused by ventricular tachycardia or fibrillation, and bronchospasm during anesthesia. N-Isopropylnoradrenaline is also indicated for cases of cardiac arrest until preferable treatments like electric shock and pacemakers are available. N-Isopropylnoradrenaline is also indicated as an adjunct therapy to fluid and electrolyte replacement therapy in hypovolemic shock, septic shock, hypoperfusion, congestive heart failure, and cardiogenic shock.

N-Isopropylnoradrenaline is also used to associated treatment for these conditions: Adams-Stokes attacks, Bradycardia, Bronchospasm, Cardiac Arrest (CA), Cardiac electrical storm, Congestive Heart Failure (CHF), Hypoperfusion, Septic Shock, Serious Heart Block, Shock, Cardiogenic, Shock, Hypovolemic, Short QT syndrome, Syncope, Torsades de Pointes, Transient Heart Block, Arrhythmia of ventricular origin, Beta blocker overdose, Mild Heart Block

How N-Isopropylnoradrenaline works

N-Isopropylnoradrenaline is a non-selective beta adrenergic receptor agonist. Agonism of beta-1 and beta-2 adrenergic receptors causes the alpha subunit of G-protein coupled receptors to exchange GMP for GTP, activating them, and allowing the alpha subunit to dissociate from the beta and gamma subunits. Dissociation of the alpha subunit activates adenylate cyclase, converting ATP to cyclic AMP. Cyclic AMP activates protein kinase A (PKA), which phosphorylates cardiac L-type calcium channels such as Cav1.2. These channels depolarize cells by inward active transport of calcium ions.

Agonism of beta-1 adrenergic receptors lead to increased strength of contractility, conduction of nerve impulses, speed of relaxation, and rate in the heart.

Agonism of beta-2 adrenergic receptors leads to glycogenolysis in the liver, glucagon release from the pancreas, and activation of the renin-angiotensin-aldosterone system.

In the alveoli, agonism of beta-2 adrenergic receptors, activates similar pathways to the heart, however the end result is regulation of sodium channels, the cystic fibrosis transmembrane conductance regulator (CFTR), and sodium potassium ATPase. PKA phosphorylates scaffolding proteins and sodium channels, increasing the number of sodium channels on the apical side of alveolar cells and increasing active transport of sodium ions into cells. Agonism of beta-2 adrenergic receptors can also increase chloride ion transport across CFTR. Together, these actions lead to passive transport of water out of the alveoli, and the clearance of alveolar fluid.

Toxicity

Patients experiencing an overdose may present with tachycardia, arrhythmias, palpitations, angina, hypotension, or hypertension. Overdose should be treated by reducing or stopping administration of isoprenaline and monitoring blood pressure, pulse, respiration, and ECG.

In rats, the LD50 is 2221 mg/kg orally, 128 mg/kg intraperitoneally, and 600 mg/kg subcutaneously. In mice, the LD50 is 1260 orally and 450 mg/kg intraperitoneally.

Food Interaction

No interactions found.

Volume of Distribution

In pediatric patients, the volume of distribution was 216 ± 57 mL/kg.

Elimination Route

Data regarding absorption kinetics of isoprenaline are not readily available.

Half Life

The half life of intravenous isoprenaline is 2.5-5 minutes. Oral isoprenaline has a half life of 40 minutes.

Clearance

In pediatric patients, the clearance of isoprenaline was 42.5 ± 5.0 mL/kg/min.

Elimination Route

N-Isopropylnoradrenaline is 12.2-27.0% recovered in the feces and 59.1-106.8% recovered in the urine after 48 hours. The majority of the recovered dose in the urine is conjugated isoprenaline, with 6.5-16.2% free isoprenaline, and 2.6-11.4% 3-O-methylisoprenaline and conjugates.

Innovators Monograph

You find simplified version here N-Isopropylnoradrenaline

http://classyfire.wishartlab.com/tax_nodes/C0000000
http://classyfire.wishartlab.com/tax_nodes/C0002448
http://classyfire.wishartlab.com/tax_nodes/C0000134
http://classyfire.wishartlab.com/tax_nodes/C0001286
http://classyfire.wishartlab.com/tax_nodes/C0000135
http://classyfire.wishartlab.com/tax_nodes/C0003899
http://classyfire.wishartlab.com/tax_nodes/C0004647
http://classyfire.wishartlab.com/tax_nodes/C0004646
http://classyfire.wishartlab.com/tax_nodes/C0002279
http://classyfire.wishartlab.com/tax_nodes/C0001661
http://classyfire.wishartlab.com/tax_nodes/C0001897
http://classyfire.wishartlab.com/tax_nodes/C0002228
http://classyfire.wishartlab.com/tax_nodes/C0004557
http://classyfire.wishartlab.com/tax_nodes/C0004150
http://classyfire.wishartlab.com/tax_nodes/C0003073
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:64317
http://www.hmdb.ca/metabolites/HMDB0015197
http://www.genome.jp/dbget-bin/www_bget?cpd:C07056
https://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=3779
https://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=46507323
https://www.chemspider.com/Chemical-Structure.3647.html
http://www.bindingdb.org/bind/chemsearch/marvin/MolStructure.jsp?monomerid=25392
https://mor.nlm.nih.gov/RxNav/search?searchBy=RXCUI&searchTerm=6054
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=64317
https://www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL434
http://bidd.nus.edu.sg/group/cjttd/ZFTTDDRUG.asp?ID=DNC000819
http://www.pharmgkb.org/drug/PA450121
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=536
http://www.rxlist.com/cgi/generic3/isoproterenol.htm
https://www.drugs.com/cdi/isoproterenol.html
https://en.wikipedia.org/wiki/Isoprenaline
*** Taking medicines without doctor's advice can cause long-term problems.
Share