Natures Plus Especially Yours

Natures Plus Especially Yours Uses, Dosage, Side Effects, Food Interaction and all others data.

A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk.

Biotin is a water-soluble B-complex vitamin which is composed of an ureido ring fused with a tetrahydrothiophene ring, which attaches a valeric acid substituent at one of its carbon atoms. Biotin is used in cell growth, the production of fatty acids, metabolism of fats, and amino acids. It plays a role in the Kreb cycle, which is the process in which energy is released from food. Biotin not only assists in various metabolic chemical conversions, but also helps with the transfer of carbon dioxide. Biotin is also helpful in maintaining a steady blood sugar level. Biotin is often recommended for strengthening hair and nails. Consequenty, it is found in many cosmetic and health products for the hair and skin. Biotin deficiency is a rare nutritional disorder caused by a deficiency of biotin. Initial symptoms of biotin deficiency include: Dry skin, Seborrheic dermatitis, Fungal infections, rashes including erythematous periorofacial macular rash, fine and brittle hair, and hair loss or total alopecia. If left untreated, neurological symptoms can develop, including mild depression, which may progress to profound lassitude and, eventually, to somnolence; changes in mental status, generalized muscular pains (myalgias), hyperesthesias and paresthesias. The treatment for biotin deficiency is to simply start taking some biotin supplements. A lack of biotin in infants will lead to a condition called seborrheic dermatitis or "cradle cap". Biotin deficiencies are extremely rare in adults but if it does occur, it will lead to anemia, depression, hair loss, high blood sugar levels, muscle pain, nausea, loss of appetite and inflamed mucous membranes.

Calcium plays a vital role in the anatomy, physiology and biochemistry of organisms and of the cell, particularly in signal transduction pathways. The skeleton acts as a major mineral storage site for the element and releases Ca2+ ions into the bloodstream under controlled conditions. Circulating calcium is either in the free, ionized form or bound to blood proteins such as serum albumin. Although calcium flow to and from the bone is neutral, about 5 mmol is turned over a day. Bone serves as an important storage point for calcium, as it contains 99% of the total body calcium. Low calcium intake may also be a risk factor in the development of osteoporosis. The best-absorbed form of calcium from a pill is a calcium salt like carbonate or phosphate. Calcium gluconate and calcium lactate are absorbed well by pregnant women. Seniors absorb calcium lactate, gluconate and citrate better unless they take their calcium supplement with a full breakfast.

Calcium (Ca2+) plays a pivotal role in the physiology and biochemistry of organisms and the cell. It plays an important role in signal transduction pathways, where it acts as a second messenger, in neurotransmitter release from neurons, contraction of all muscle cell types, and fertilization. Many enzymes require calcium ions as a cofactor, those of the blood-clotting cascade being notable examples. Extracellular calcium is also important for maintaining the potential difference across excitable cell membranes, as well as proper bone formation.

Chromium is a transition element with the chemical symbol Cr and atomic number 24 that belongs to Group 6 of the periodic table. It is used in various chemical, industrial and manufacturing applications such as wood preservation and metallurgy. The uses of chromium compounds depend on the valency of chromium, where trivalent Cr (III) compounds are used for dietary Cr supplementation and hexavalent Cr (VI) compounds are used as corrosion inhibitors in commercial settings and are known to be human carcinogens . Humans can be exposed to chromium via ingestion, inhalation, and dermal or ocular exposure . Trivalent chromium (Cr(III)) ion is considered to be an essential dietary trace element as it is involved in metabolism of blood glucose, regulation of insulin resistance and metabolism of lipids. Clinical trials and other studies suggest the evidence of chromium intake improving glucose tolerance in patients with Type I and II diabetes, however its clinical application in the standard management of type II diabetes mellitus is not established. Chromium deficiency has been associated with a diabetic-like state, impaired growth, decreased fertility and increased risk of cardiovascular diseases .

According to the National Institute of Health, the daily dietary reference intake (DRI) of chromium for adult male and non-pregnant female are 35 μg and 25 μg, respectively . Chromium picolinate capsules may be used as nutritional adjuvant in patients with or at risk of type 2 diabetes mellitus (T2DM) to improve blood sugar metabolism and stabilize the levels of serum cholesterol. Chromium chloride is available as an intravenous injection for use as a supplement to intravenous solutions given for total parenteral nutrition (TPN) .

Trivalent chromium is part of glucose tolerance factor, an essential activator of insulin-mediated reactions. Chromium helps to maintain normal glucose metabolism and peripheral nerve function. Chromium increases insulin binding to cells, increases insulin receptor density and activates insulin receptor kinase leading to enhanced insulin sensitivity . In chromium deficiency, intravenous administration of chromium resulted in normalization of the glucose tolerance curve from the diabetic-like curve typical of chromium deficiency .

Iodine is commonly used as an antiseptic for minor cuts and abrasions, preventing infections that may result from contaminated wounds. Additionally, iodine has been studied in the treatment of fibrocystic disease and breast cancer.

A metallic element found in certain minerals, in nearly all soils, and in mineral waters. It is an essential constituent of hemoglobin, cytochrome, and other components of respiratory enzyme systems. Its chief functions are in the transport of oxygen to tissue (hemoglobin) and in cellular oxidation mechanisms. Depletion of iron stores may result in iron-deficiency anemia. Iron is used to build up the blood in anemia.

The major activity of supplemental iron is in the prevention and treatment of iron deficiency anemia. Iron has putative immune-enhancing, anticarcinogenic and cognition-enhancing activities.

Magnesium is classified as an alkaline earth metal and has 2 hydration shells. The element can be found in abundance in the hydrosphere and in mineral salts such as dolomite and magnesium carbonate.

Common dietary sources of magnesium include nuts (cashews, peanuts, almonds), beans, bananas, apples, carrots, broccoli, and leafy greens. Magnesium is an important enzyme cofactor and is essential to several metabolic processes. Further, the mineral helps regulate blood pressure and is necessary for RNA, DNA and protein synthesis among several other functions.

Despite the importance of magnesium and its availability via several food sources, an estimated 56 to 68% of adults who live in developed, western countries do not meet the recommended daily intake (RDI) of magnesium. Several factors and common behaviours reduce the availability of magnesium in the diet such as food processing and cooking vegetables (which are normally a rich source of magnesium).

Manganese is a transition metal with a molar mass of 54.94g/mol. Manganese is considered critical for human health, and plays important roles in development, metabolism, and the antioxidant system. That said, excessive manganese intake is associated with manganism, a neurodegenerative disorder that causes dopaminergic neuronal death and parkinsonian-like symptoms.

Niacin is a preparation of Nicotinic acid. It is proven effective at lowering VLDL, LDL, total cholesterol and triglyceride levels while raising HDL levels. So Niacin has been prescriped for the treatment of cardiovascular disease particularly the hyperlipidemias.

Niacin is a B vitamin used to treat vitamin deficiencies as well as hyperlipidemia, dyslipidemia, hypertriglyceridemia, and to reduce the risk of myocardial infarctions. Niacin acts to decrease levels of very low density lipoproteins and low density lipoproteins, while increasing levels of high density lipoproteins. Niacin has a wide therapeutic window with usual oral doses between 500mg and 2000mg. Patients with diabetes, renal failure, uncontrolled hypothyroidism, and elderly patients taking niacin with simvastatin or lovastatin are at increased risk of myopathy and rhabdomyolysis.

Pantothenic acid, also called pantothenate or vitamin B5 (a B vitamin), is a water-soluble vitamin discovered by Roger J. Williams in 1919. For many animals, pantothenic acid is an essential nutrient as it is required to synthesize coenzyme-A (CoA), as well as to synthesize and metabolize proteins, carbohydrates, and fats. Pantothenic acid is the amide between pantoic acid and β-alanine and commonly found as its alcohol analog, the provitamin panthenol, and as calcium pantothenate. Small quantities of pantothenic acid are found in nearly every food, with high amounts in whole-grain cereals, legumes, eggs, meat, royal jelly, avocado, and yogurt. Pantothenic acid is an ingredient in some hair and skin care products. Only the dextrorotatory (D) isomer of pantothenic acid possesses biological activity. while the levorotatory (L) form may antagonize the effects of the dextrorotatory isomer.

Pantothenic acid is used in the synthesis of coenzyme A (CoA). CoA is thought to act as a carrier molecule, allowing the entry of acyl groups into cells. This is of critical importance as these acyl groups are used as substrates in the tricarboxylic acid cycle to generate energy and in the synthesis of fatty acids, cholesterol, and acetylcholine. Additionally, CoA is part of acyl carrier protein (ACP), which is required in the synthesis of fatty acids in addition to CoAs use as a substrate.

Pantothenic acid in the form of CoA is also required for acylation and acetylation, which, for example, are involved in signal transduction and enzyme activation and deactivation, respectively.

Potassium is an essential nutrient, like Calcium and Magnesium. It was identified as a shortfall nutrient by the 2015-2020 Advisory Committee of Dietary Guidelines for Americans. Many conditions and diseases interfere with normal body potassium balance, and underconsumption of potassium is one example. Hypokalemia (low potassium) or hyperkalemia (high potassium) may result, manifesting as various signs and symptoms. Some examples of potassium-related complications include life-threatening arrhythmia, neuromuscular dysfunction, diarrhea, nausea, and vomiting.

Various pharmacological preparations have been formulated to replenish potassium. They are available in an assortment of tablet, injection, and other forms, depending on the setting and condition being treated. Potassium is often a key ingredient for intravenous fluids, given to patients in clinical settings for rehydration, nutrition, and replenishment of electrolytes. Examples of potassium formulations include potassium citrate, potassium chloride, and potassium with dextrose and sodium chloride.

Potassium maintains an electrolyte gradient on cell surfaces, keeping at specific concentrations inside and outside of the cell; this impacts fluid and electrolyte balance, nerve transmission, muscle contraction, as well as cardiac and kidney function. Clinical evidence has associated potassium intake with lower blood pressure in adults, reducing the risk stroke and heart disease. Dietary potassium may exert beneficial effects on bone loss in the elderly and kidney stones. Consumption of white vegetables, which are normally high in potassium, is associated with a lower risk of stroke.

Riboflavin is a B vitamin. It can be found in certain foods such as milk, meat, eggs, nuts, enriched flour, and green vegetables. Riboflavin is frequently used in combination with other B vitamins in vitamin B complex products. Vitamin B complex generally includes vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin/niacinamide), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B12 (cyanocobalamin), and folic acid. However, some products do not contain all of these ingredients and some may include others, such as biotin, para-aminobenzoic acid (PABA), choline bitartrate, and inositol.

Riboflavin is used for preventing low levels of riboflavin (riboflavin deficiency), cervical cancer, and migraine headaches. It is also used for treating riboflavin deficiency, acne, muscle cramps, burning feet syndrome, carpal tunnel syndrome, and blood disorders such as congenital methemoglobinemia and red blood cell aplasia. Some people use riboflavin for eye conditions including eye fatigue, cataracts, and glaucoma.

Other uses include increasing energy levels; boosting immune system function; maintaining healthy hair, skin, mucous membranes, and nails; slowing aging; boosting athletic performance; promoting healthy reproductive function; canker sores; memory loss, including Alzheimer's disease; ulcers; burns; alcoholism; liver disease; sickle cell anemia; and treating lactic acidosis brought on by treatment with a class of AIDS medications called NRTI drugs.

Riboflavin or vitamin B2 is an easily absorbed, water-soluble micronutrient with a key role in maintaining human health. Like the other B vitamins, it supports energy production by aiding in the metabolising of fats, carbohydrates, and proteins. Vitamin B2 is also required for red blood cell formation and respiration, antibody production, and for regulating human growth and reproduction. It is essential for healthy skin, nails, hair growth and general good health, including regulating thyroid activity. Riboflavin also helps in the prevention or treatment of many types of eye disorders, including some cases of cataracts.

Thiamine, in the form of thiamine pyrophosphate, is the coenzyme for decarboxylation of α-ketoglutaric acid. Thiamine deficiency affects the peripheral nervous system, the gastrointestinal tract, and the cardiovascular system. This vitamin is necessary for the optimal growth of infants and children. Thiamine is not stored in the body, and is regularly lost from tissues during short periods of deficiency. In order to maintain normal health, an adequate amount of thiamine is required every day. Deficiency of thiamine leads to fatigue, anorexia, gastrointestinal disturbance, tachycardia, irritability and neurological symptoms. Beriberi, a disease due to vitamin B1 deficiency, is common in alcoholics, in pregnant women receiving an inadequate diet, and in people with malabsorption syndrome, prolonged diarrhoea and hepatic disease.

Thiamine is well absorbed from the gastrointestinal tract and widely distributed throughout the body. Thiamine is rapidly absorbed from the upper small intestine. Thiamine is not stored in the body to any appreciable extent. Excess ingested thiamine appears in urine as intact thiamine or as pyrimidine, which arises from degradation of the thiamine molecule. The plasma half life of thiamine is 24 hours.

Thiamine is a vitamin with antioxidant, erythropoietic, cognition-and mood-modulatory, antiatherosclerotic, putative ergogenic, and detoxification activities. Thiamine has been found to protect against lead-induced lipid peroxidation in rat liver and kidney. Thiamine deficiency results in selective neuronal death in animal models. The neuronal death is associated with increased free radical production, suggesting that oxidative stress may play an important early role in brain damage associated with thiamine deficiency. Thiamine plays a key role in intracellular glucose metabolism and it is thought that thiamine inhibits the effect of glucose and insulin on arterial smooth muscle cell proliferation. Inhibition of endothelial cell proliferation may also promote atherosclerosis. Endothelial cells in culture have been found to have a decreased proliferative rate and delayed migration in response to hyperglycemic conditions. Thiamine has been shown to inhibit this effect of glucose on endothelial cells.

Vitamin A plays an essential role in the function of retina and is essential for growh and differentiation of epithelial tissue.

Vitamin A is effective for the treatment of Vitamin A deficiency. Vitamin A refers to a group of fat-soluble substances that are structurally related to and possess the biological activity of the parent substance of the group called all-trans retinol or retinol. Vitamin A plays vital roles in vision, epithelial differentiation, growth, reproduction, pattern formation during embryogenesis, bone development, hematopoiesis and brain development. It is also important for the maintenance of the proper functioning of the immune system.

Vitamin D ultimately comprises a group of lipid-soluble secosteroids responsible for a variety of biological effects, some of which include increasing the intestinal absorption of calcium, magnesium, and phosphate. With reference to human use, there are 2 main forms of vitamin D - vitamin D3 (cholecalciferol) and vitamin D2 (ergocalciferol). When non-specific references are made about 'vitamin d', the references are usually about the use of vitamin D3 and/or D2.

Vitamin D3 and D2 require hydroxylation in order to become biologically active in the human body. Since vitamin D can be endogenously synthesized in adequate amounts by most mammals exposed to sufficient quantities of sunlight, vitamin D functions like a hormone on vitamin D receptors to regulate calcium in opposition to parathyroid hormone. Vitamin D plays an essential physiological role in maintaining calcium homeostasis and metabolism. There are several different vitamin D supplements that are given to treat or to prevent osteomalacia and rickets, or to meet the daily criteria of vitamin D consumption.

The in vivo synthesis of the predominant two biologically active metabolites of vitamin D occurs in two steps. The first hydroxylation of vitamin D3 or D2 occurs in the liver to yield 25-hydroxyvitamin D while the second hydroxylation happens in the kidneys to give 1, 25-dihydroxyvitamin D . These vitamin D metabolites subsequently facilitate the active absorption of calcium and phosphorus in the small intestine, serving to increase serum calcium and phosphate levels sufficiently to allow bone mineralization . Conversely, these vitamin D metabolites also assist in mobilizing calcium and phosphate from bone and likely increase the reabsorption of calcium and perhaps also of phosphate via the renal tubules . There exists a period of 10 to 24 hours between the administration of vitamin D and the initiation of its action in the body due to the necessity of synthesis of the active vitamin D metabolites in the liver and kidneys . It is parathyroid hormone that is responsible for the regulation of such metabolism at the level of the kidneys .

Vitamin E Capsule is a Vitamin E preparation. Vitamin E acts as an antioxidant in the body. Vitamin E protects polyunsaturated fatty acids (which are components of cellular membrane) and other oxygen-sensitive substances such as vitamin A & vitamin C from oxidation. Vitamin E reacts with free radicals, which is the cause of oxidative damage to cell membranes, without the formation of another free radical in the process. The main pharmacological action of vitamin E in humans is its antioxidant effect.

In premature neonates irritability, edema, thrombosis and hemolytic anemia may be caused due to vitamin E deficiency. Creatinuria, ceroid deposition, muscle weakness, decreased erythrocyte survival or increased in vitro hemolysis by oxidizing agents have been identified in adults and children with low serum tocopherol concentrations.

Vitamin E is a collective term used to describe 8 separate fat soluble antioxidants, most commonly alpha-tocopherol. Vitamin E acts to protect cells against the effects of free radicals, which are potentially damaging by-products of the body's metabolism. Vitamin E deficiency is seen in persons with abetalipoproteinemia, premature, very low birth weight infants (birth weights less than 1500 grams, or 3½ pounds), cystic fibrosis, and cholestasis and severe liver disease. Preliminary research suggests vitamin E may help prevent or delay coronary heart disease and protect against the damaging effects of free radicals, which may contribute to the development of chronic diseases such as cancer. It also protects other fat-soluble vitamins (A and B group vitamins) from destruction by oxygen. Low levels of vitamin E have been linked to increased incidence of breast and colon cancer.

A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with anemia, short stature, hypogonadism, impaired wound healing, and geophagia. It is identified by the symbol Zn .

A newer study suggests implies that an imbalance of zinc is associated with the neuronal damage associated with traumatic brain injury, stroke, and seizures .

Understanding the mechanisms that control brain zinc homeostasis is, therefore, imperative to the development of preventive and treatment regimens for these and other neurological disorders .

Trade Name Natures Plus Especially Yours
Generic Vitamin A + Vitamin C + Vitamin D + Vitamin E + Thiamine + Riboflavin + Niacin + Vitamin B + Folate + Vitamin B + Biotin + Pantothenic Acid + Calcium + Iron + Iodine + Magnesium + Zinc + Manganese + Chromium + Potassium
Weight 10.000iu, 300mg, 400iu, 400iu, 10mg, 10mg, 10mg, 6100mg, 800mg, 12100mg, 200m, 50mg, 150mg, 40mg, 225mg, 300mg, 10mg, 20mg, 15mcg, 15mg
Type Tablet
Therapeutic Class
Manufacturer Radiant Sentral Nutrindo
Available Country Indonesia
Last Updated: September 19, 2023 at 7:00 am
Natures Plus Especially Yours
Natures Plus Especially Yours

Uses

Biotin is a B-complex vitamin found in many multivitamin products.

For nutritional supplementation, also for treating dietary shortage or imbalance.

Calcium is a mineral found in over-the-counter supplements or prescription formulations used for the treatment of specific medical conditions related to calcium deficiency.

Calcium plays a vital role in the anatomy, physiology and biochemistry of organisms and of the cell, particularly in signal transduction pathways. It is vital in cell signaling, muscular contractions, bone health, and signalling cascades.

Chromium is an ingredient found in a variety of supplements and vitamins.

Indicated for use as a supplement to intravenous solutions given for total parenteral nutrition (TPN), to maintain chromium serum levels and to prevent depletion of endogenous stores and subsequent deficiency symptoms .

Iodine is an ingredient of nutritional supplements that is also used for disinfection.

Investigated for use/treatment in breast disorders (unspecified) and pain (acute or chronic).

Iron is an essential element commonly used for the treatment of patients with documented iron deficiency.

Used in preventing and treating iron-deficiency anemia.

Magnesium is a medication used for many purposes including constipation, indigestion, magnesium deficiency, and pre-eclampsia.

Healthy levels of magnesium can be achieved through a well balanced diet, but if food sources are insufficient, magnesium supplements can be used to prevent and treat magnesium deficiencies.

In medicine, various magnesium salts may be used in laxative and antacid products. For example, magnesium citrate is available over-the-counter and may be used to manage occasional constipation. Magnesium sulfate may be used on its own or with total parenteral nutrition to treat hypomagnesemia. Magnesium sulfate is also indicated to prevent seizures in pregnant women with pre-eclampsia, and to manage seizures associated with eclampsia.

Manganese is a transition metal used for supplementation of manganese during Total Parenteral Nutrition (TPN).

Indicated for use as a supplement to intravenous solutions given for Total Parenteral Nutrition (TPN). Administration helps to maintain plasma levels and to prevent depletion of endogenous stores and subsequent deficiency symptoms.

Therapy with lipid-altering agents should be only one component of multiple risk factor intervention in individuals at significantly increased risk for atheroscleroticvascular disease due to hyperlipidemia. Niacin therapy is used for an adjunct to diet when the response to a diet restricted in saturated fat and cholesterol and other nonpharmacologic measures alone has been inadequate.

  • Niacin is used to reduce elevated TC, LDL-C, Apo B and TG levels, and to increase HDL-C in patients with primary hyperlipidemia and mixed dyslipidemia.
  • In patients with a history of myocardial infarction and hyperlipidemia, niacin is used to reduce the risk of recurrent nonfatal myocardial infarction.
  • In patients with a history of coronary artery disease (CAD) and hyperlipidemia, niacin, in combination with a bile acid binding resin, is used to slow progression or promote regression of atherosclerotic disease.
  • Niacin in combination with a bile acid binding resin is used to reduce elevated TC and LDL-C levels in adult patients with primary hyperlipidemia.
  • Niacin is also used as adjunctive therapy for treatment of adult patients with severe hypertriglyceridemia who present a risk of pancreatitis and who do not respond adequately to a determined dietary effort to control them.

Pantothenic acid is a vitamin B5 found in various nutritional supplements.

Studied for the treatment of many uses such as treatment of testicular torsion, diabetic ulceration, wound healing, acne, obesity, diabetic peripheral polyneuropathy. It has also been investigated for its hypolipidemic effects and as cholesterol lowering agent.

Potassium is a medication used to treat hypokalemic conditions and to clear the colon prior to colonoscopy.

General uses of potassium

Potassium is indicated to treat a variety of conditions. Firstly, it used to replenish potassium that has been depleted by conditions including but not limited to malabsorption, decreased intake, or excess sodium intake. The causes of potassium deficiency are numerous. The following indications for potassium are not comprehensive, but include the main indications for which this nutrient is used. Various products and preparations contain potassium.

Potassium chloride

Potassium chloride is one of the main preparations of potassium used in a clinical setting. The oral solution is indicated for the prevention and treatment of hypokalemia presenting with or without metabolic alkalosis, in patients who have failed conservative management with potassium-rich foods or diuretic dose titrations. The injection form of potassium chloride is indicated to replenish potassium in patients who are not feasible candidates for oral potassium. Highly concentrated potassium is intended for the treatment of potassium deficiency in fluid restricted individuals who cannot tolerate fluid volumes normally associated with injected potassium solutions that contain lower concentrations. Finally, the extended-release tablet preparation of potassium chloride is used to treat hypokalemia with or without metabolic alkalosis, to treat digitalis intoxication, and to manage patients with hypokalemic familial periodic paralysis. It is also used in the prevention of hypokalemia in those who are at a high risk of negative clinical outcomes if hypokalemia occurs; patients on digitalis or those with cardiac arrhythmias would be at particular risk of negative outcomes.

Potassium chloride with dextrose and sodium chloride

This liquid preparation is is indicated in a clinical setting as a source of water, calories and electrolytes. Potassium acetate solution is meant as an alternative to potassium chloride, replenishing potassium and added to large volume infusion fluids for intravenous injection.

Potassium citrate

The potassium citrate preparation is used for the management of renal tubular acidosis (RTA) with calcium stones (nephrolithiasis); calcium oxalate stones by any cause, and uric acid nephrolithiasis (with or without calcium stones). This regimen also includes adequate water intake (leading to a urine out put of 2 L/day or more) and sodium restriction.

Preventing and treating riboflavin deficiency and conditions related to riboflavin deficiency.

Cataracts, an eye disorder. People who eat more riboflavin as part of their diet seems to have a lower risk of developing cataracts. Also, taking supplements containing riboflavin plus niacin seems to help prevent cataracts.

High amounts of homocysteine in the blood (hyperhomocysteinemia). Some people are unable to convert the chemical homocysteine into the amino acid methionine. People with this condition, especially those with low riboflavin levels, have high amounts of homocysteine in the blood. Taking riboflavin for 12 weeks seems to reduce homocysteine levels by up to 40% in some people with this condition. Also, certain antiseizure drugs can increase homocysteine in the blood. Taking riboflavin along with folic acid and pyridoxine seems to lower homocysteine levels by 26% in people with high homocysteine levels due to antiseizure drugs.

Migraine headaches. Taking high-dose riboflavin (400 mg/day) seems to significantly reduce the number of migraine headache attacks. However, taking riboflavin does not appear to reduce the amount of pain or the amount of time a migraine headache lasts. Also, taking lower doses of riboflavin (200 mg/day) does not seem to reduce the number of migraine headache attacks.

Thiamine is specifically used in the treatment of the various manifestations of thiamine deficiency such as Beriberi and Wernick's encephalopathy, neuritis associated with pregnancy and pellagra. Supplementary Thiamine may be used prophylactically in conditions where there is low dietary intake or impaired gastro intestinal absorption of thiamine (e.g. alcohol) or where requirements are increased (pregnancy, carbohydrate rich diet).

Effective for:

  • Vitamin A deficiency. Taking vitamin A by mouth is effective for preventing and treating symptoms of vitamin A deficiency. Vitamin A deficiency can occur in people with protein deficiency, diabetes, over-active thyroid, fever, liver disease, cystic fibrosis, or an inherited disorder called abetalipoproteinemia.

Possibly Effective for:

  • Breast cancer. Premenopausal women with a family history of breast cancer who consume high levels of vitamin A in their diet seem to have reduced risk of developing breast cancer. It is not known if taking vitamin A supplements has the same benefit.
  • Cataracts. Research suggests that high intake of vitamin A in the diet is linked to a lower risk of developing cataracts.
  • Diarrhea related to HIV. Taking vitamin A along with conventional medicines seems to decrease the risk of death from diarrhea in HIV-positive children with vitamin A deficiency.
  • Malaria. Taking vitamin A by mouth seems to decrease malaria symptoms in children less than 3 years-old living in areas where malaria is common.
  • Measles. Taking vitamin A by mouth seems to reduce the risk of measles complications or death in children with measles and vitamin A deficiency.
  • Precancerous lesions in the mouth (oral leukoplakia). Research suggests that taking vitamin A can help treat precancerous lesions in the mouth.
  • Recovery from laser eye surgery (photoreactive keratectomy). Taking vitamin A by mouth along with vitamin E seems to improve healing after laser eye surgery.
  • Complications after pregnancy. Taking vitamin A seems to reduce the risk of diarrhea and fever after pregnancy in malnourished women.
  • Complications during pregnancy. Taking vitamin A by mouth seems to reduce the risk of death and night blindness during pregnancy in malnourished women.
  • Eye disease affecting the retina (retinitis pigmentosa). Research suggests that taking vitamin A can slow the progression of an eye disease that causes damage to the retina.

Vitamin D is an ingredient found in a variety of supplements and vitamins.

Vitamin D is indicated for use in the treatment of hypoparathyroidism, refractory rickets (also known as vitamin D resistant rickets), and familial hypophosphatemia .

As a dietary supplement:

  • Vitamin E deficiency resulting from impaired absorption.
  • Increased requirements due to diet rich in polyunsaturated fats.
  • For healthy hair & skin
  • As an Antioxidant
  • Hemolytic anemia due to Vitamin E deficiency

Therapeutic use

: Heavy metal poisoning, Hepatotoxin poisoning, Hemolytic anemia, Oxygen therapy and replacement therapy in nutritional deficiency states for the betterment of skin and hair.

Zinc is an essential element commonly used for the treatment of patients with documented zinc deficiency.

Zinc can be used for the treatment and prevention of zinc deficiency/its consequences, including stunted growth and acute diarrhea in children, and slowed wound healing. It is also utilized for boosting the immune system, treating the common cold and recurrent ear infections, as well as preventing lower respiratory tract infections .

Natures Plus Especially Yours is also used to associated treatment for these conditions: Vitamin Deficiency, Nutritional supplementationCalcium Deficiency, Deficiency, Vitamin D, Osteodystrophy, Osteomalacia, Osteoporosis, Chronic Hypocalcemia, Chronic Hypocalcemia caused by anticonvulsant medications, Care of the Joint, Mineral supplementation, Nutritional supplementationMineral supplementationInfection in minor cuts, scrapes, or burns, Antisepsis, Antimycotic, Prophylaxis of bacterial skin infectionsAnemia, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Restless Legs Syndrome (RLS), Concomitant myelosuppressive chemotherapy, Nutritional supplementation, Dietary supplementationCalcium Deficiency, Magnesium Deficiency, Zinc DeficiencyMineral supplementation, Total parenteral nutrition therapy, Vitamin supplementation, Dietary supplementationAtherosclerosis, Mixed Dyslipidemias, Myocardial Infarction, Pellagra, Vitamin Deficiency, Primary Hyperlipidemia, Severe Hyperlipidemia, Dietary supplementationNutritional supplementationCaloric Intake, Electrolyte and fluid balance conditions, Hydration, Hypokalemia, PotassiumAriboflavinosis, Beriberi, Constipation, Functional Gastrointestinal Disorders, Joint Pain, Metabolic cardiomyopathy, Migraine, Neuralgia, Peripheral neuritis, Peripheral paralysis, Soreness, Muscle, Vitamin B complex deficiency, Vitamin B1 deficiency, Vitamin Deficiency, Wernicke's encephalopathy, Dietary and Nutritional Therapies, Nutritional supplementation, Vitamin supplementation, Dietary supplementationAnemia, B12 Deficiency Anemia, Beriberi, Cardiovascular Heart Disease caused by Thiamine Deficiency, Folic Acid Deficiency Anemia, Infantile Beriberi, Infection, Iron Deficiency (ID), Liver disorder, Neuritis caused by Pregnancy, Secondary anemia, Thiamine Deficiency, Vitamin Deficiency, Wernicke's encephalopathy, Nutritional supplementation, Vitamin supplementation, Dietary supplementationDeficiency, Vitamin A, Deficiency, Vitamin D, Degenerative Retinal Disorders, Disorder of the Epithelium, Disorder of the Mesoderm, Inner ear disorder, Vitamin Deficiency, Vitamin E Deficiency, Nutritional supplementationDeficiency, Vitamin DVitamin Deficiency, Long-chain omega-3 fatty acid supplementation, Dietary supplementationCandidiasis, Common Cold, Diaper Dermatitis, Diaper Rash, Eye redness, Iron Deficiency (ID), Ocular Irritation, Skin Irritation, Sunburn, Wilson's Disease, Zinc Deficiency, Dietary and Nutritional Therapies, Dietary supplementation

How Natures Plus Especially Yours works

Biotin is necessary for the proper functioning of enzymes that transport carboxyl units and fix carbon dioxide, and is required for various metabolic functions, including gluconeogenesis, lipogenesis, fatty acid biosynthesis, propionate metabolism, and catabolism of branched-chain amino acids.

Calcium plays a vital role in the anatomy, physiology and biochemistry of organisms and of the cell, particularly in signal transduction pathways. More than 500 human proteins are known to bind or transport calcium. The skeleton acts as a major mineral storage site for the element and releases Ca2+ ions into the bloodstream under controlled conditions. Circulating calcium is either in the free, ionized form or bound to blood proteins such as serum albumin. Parathyroid hormone (secreted from the parathyroid gland) regulates the resorption of Ca2+ from bone. Calcitonin stimulates incorporation of calcium in bone, although this process is largely independent of calcitonin. Although calcium flow to and from the bone is neutral, about 5 mmol is turned over a day. Bone serves as an important storage point for calcium, as it contains 99% of the total body calcium. Low calcium intake may also be a risk factor in the development of osteoporosis. The best-absorbed form of calcium from a pill is a calcium salt like carbonate or phosphate. Calcium gluconate and calcium lactate are absorbed well by pregnant women. Seniors absorb calcium lactate, gluconate and citrate better unless they take their calcium supplement with a full breakfast. The currently recommended calcium intake is 1,500 milligrams per day for women not taking estrogen and 800 milligrams per day for women on estrogen. There is close to 300 milligrams of calcium in one cup of fluid milk. Calcium carbonate is currently the best and least expensive form of calcium supplement available.

Chromium is an essential nutrient involved in the metabolism of glucose, insulin and blood lipids. Its role in potentiating insulin signalling cascades has been implicated in several studies. Chromium upregulates insulin-stimulated insulin signal transduction via affecting effector molecules downstream of the insulin receptor (IR). IR-mediated signalling pathway involves phoshorylation of multiple intracellular domains and protein kinases, and downstream effector molecules . Upon activation by ligands, intracellular β-subunit of IR autophosphorylates and activates tyrosine kinase domain of the IR, followed by activation and phosphorylation of regulatory proteins and downstream signalling effectors including phosphatidylinositol 2-kinase (PI3K). PI3K activates further downstream reaction cascades to activate protein kinase B (Akt) to ultimately promote translocation of glucose transporter-4 (Glut4)-vesicles from the cytoplasm to the cell surface and regulate glucose uptake . Chromium enhances the kinase activity of insulin receptor β and increases the activity of downstream effectors, pI3-kinase and Akt.

Under insulin-resistant conditions, chromium also promotes GLUT-4 transporter translocation that is independent of activity of IR, IRS-1, PI3-kinase, or Akt; chromium mediates cholesterol efflux from the membranes via increasing fluidity of the membrane by decreasing the membrane cholesterol and upregulation of sterol regulatory element-binding protein . As a result, intracellular GLUT-4 transporters are stimulated to translocate from intracellular to the plasma membrane, leading to enhanced glucose uptake in muscle cells . Chromium attenuates the activity of PTP-1B in vitro, which is a negative regulator of insulin signaling. It also alleviates ER stress that is observed to be elevated the suppression of insulin signaling. ER stress is thought to activate c-Jun N-terminal kinase (JNK), which subsequently induces serine phosphorylation of IRS and aberration of insulin signalling . Transient upregulation of AMPK by chromium also leads to increased glucose uptake .

Molecular iodine is known to inhibit the induction and promotion of N-methyl-n-nitrosourea-induced mammary carcinogenesis, to regress 7,12-dimethylbenz(a)anthracene-induced breast tumors in rats.It has also been shown to have beneficial effects in fibrocystic human breast disease.

Iron is necessary for the production of hemoglobin. Iron-deficiency can lead to decreased production of hemoglobin and a microcytic, hypochromic anemia.

Magnesium is a cofactor for at least 300 enzymes and is important for several functions in the body with some key processes identified below. Enzymes that rely on magnesium to operate help produce energy through oxidative phosphorylation, glycolysis and ATP metabolism. They are also involved in nerve function, muscle contraction, blood glucose control, hormone receptor binding, protein synthesis, cardiac excitability, blood pressure control, gating of calcium channels and transmembrane ion flux.

The mitochondrial intracellular space is rich in magnesium, since it is required to produce the active form of ATP (adenosine triphosphate) from ADP (adenosine diphosphate) and inorganic phosphate, and behaves as a counter ion for the energy rich molecule. Additionally, magnesium is essential for ATP metabolism.

Niacin performs a number of functions in the body and so has many mechanisms, not all of which have been fully described. Niacin can decrease lipids and apolipoprotein B (apo B)-containing lipoproteins by modulating triglyceride synthesis in the liver, which degrades apo B, or by modulating lipolysis in adipose tissue.

Niacin inhibits hepatocyte diacylglycerol acyltransferase-2. This action prevents the final step of triglyceride synthesis in hepatocytes, limiting available triglycerides for very low density lipoproteins (VLDL). This activity also leads to intracellular degradation of apo B and decreased production of low density lipoproteins, the catabolic product of VLDL.

Niacin also inhibits a high density lipoprotein (HDL) catabolism receptor, which increases the levels and half life of HDL.

Pantothenic acid is incorporated into COENZYME A and protects cells against peroxidative damage by increasing the level of GLUTATHIONE.

Potassium ion is the primary intracellular cation found in virtually all body tissues. The total amount of body potassium in adults is estimated at 45 millimole (mmol)/kg body weight (about 140 g for an adult weighing 175 pounds; 1 mmol = 1 milliequivalent or 39.1 mg of potassium). Potassium mainly stays in cells, and a small amount can be found in the extracellular fluid. The amount of potassium that stays in the cell (intracellular) is 30 times that of extracellular concentration, creating a transmembrane gradient, regulated by the sodium-potassium (Na+/K+) ATPase transporter. This is an important gradient for nerve conduction, muscle contractions, and renal function. Vomiting, diarrhea, renal disease, medications, and other conditions that alter potassium excretion or shift it inside or outside of cells. In healthy patients individuals with normal renal function, markedly high or low potassium levels are rare.

Effect on blood pressure

Potassium decreases reduces intravascular volume, by reducing sodium reabsorption through an increase in urinary sodium excretion. This short-term effect, however, does not explain the long-term effects of potassium on blood pressure. Increased plasma potassium levels that occur through intake are associated with vasodilation occurring via stimulation of the sodium-potassium adenosine triphosphatase pump (Na+/-K+ATPase) and opening of potassium channels of the sodium-potassium adenosine triphosphatase pump. Other possible mechanisms of action for potassium may include alterations in barroreflex sensitivity and hormone sensitivity in vascular smooth muscle and cells of the sympathetic nervous system.

Effect on electrolyte balance and body systems

The potassium gradient across the membrane of a cell regulates cell membrane potential, maintained predominantly by the sodium-potassium (Na+/-K+ ATPase pump). Transmembrane electro-chemical gradients encourage diffusion of Na+ extracellularly and K+ intracellularly. Potassium supplementation prevents hypokalemia to maintain this balance and is often used in an oral solution or injection form in the clinical setting, preventing harmful effects such as arrhythmias, abnormal muscle function, and neurological disturbances. When activated, the Na+/-K+ ATPase pump exchanges two extracellular K+ ions for three intracellular sodium (Na+) ions, impacting membrane potential via either excitation or inhibition. This is especially important in the homeostasis of the nervous system, kidney, and cardiac muscle tissue. The body and cell distributions of potassium in normal conditions are known as internal and external balance, respectively. Reduced serum potassium (or imbalance) increases the risk of ventricular arrhythmia, heart failure and left ventricular hypertrophy (LVH).

Binds to riboflavin hydrogenase, riboflavin kinase, and riboflavin synthase. Riboflavin is the precursor of flavin mononucleotide (FMN, riboflavin monophosphate) and flavin adenine dinucleotide (FAD). The antioxidant activity of riboflavin is principally derived from its role as a precursor of FAD and the role of this cofactor in the production of the antioxidant reduced glutathione. Reduced glutathione is the cofactor of the selenium-containing glutathione peroxidases among other things. The glutathione peroxidases are major antioxidant enzymes. Reduced glutathione is generated by the FAD-containing enzyme glutathione reductase.

It is thought that the mechanism of action of thiamine on endothelial cells is related to a reduction in intracellular protein glycation by redirecting the glycolytic flux. Thiamine is mainly the transport form of the vitamin, while the active forms are phosphorylated thiamine derivatives. Natural derivatives of thiamine phosphate, such as thiamine monophosphate (ThMP), thiamine diphosphate (ThDP), also sometimes called thiamine pyrophosphate (TPP), thiamine triphosphate (ThTP), and thiamine triphosphate (AThTP), that act as coenzymes in addition to their each unique biological functions.

Vision:Vitamin A (all-trans retinol) is converted in the retina to the 11-cis-isomer of retinaldehyde or 11-cis-retinal. 11-cis-retinal functions in the retina in the transduction of light into the neural signals necessary for vision. 11-cis-retinal, while attached to opsin in rhodopsin is isomerized to all-trans-retinal by light. This is the event that triggers the nerve impulse to the brain which allows for the perception of light. All-trans-retinal is then released from opsin and reduced to all-trans-retinol. All-trans-retinol is isomerized to 11-cis-retinol in the dark, and then oxidized to 11-cis-retinal. 11-cis-retinal recombines with opsin to re-form rhodopsin. Night blindness or defective vision at low illumination results from a failure to re-synthesize 11-cis retinal rapidly.
Epithelial differentiation: The role of Vitamin A in epithelial differentiation, as well as in other physiological processes, involves the binding of Vitamin A to two families of nuclear retinoid receptors (retinoic acid receptors, RARs; and retinoid-X receptors, RXRs). These receptors function as ligand-activated transcription factors that modulate gene transcription. When there is not enough Vitamin A to bind these receptors, natural cell differentiation and growth are interrupted.

Most individuals naturally generate adequate amounts of vitamin D through ordinary dietary intake of vitamin D (in some foods like eggs, fish, and cheese) and natural photochemical conversion of the vitamin D3 precursor 7-dehydrocholesterol in the skin via exposure to sunlight.

Conversely, vitamin D deficiency can often occur from a combination of insufficient exposure to sunlight, inadequate dietary intake of vitamin D, genetic defects with endogenous vitamin D receptor, or even severe liver or kidney disease . Such deficiency is known for resulting in conditions like rickets or osteomalacia, all of which reflect inadequate mineralization of bone, enhanced compensatory skeletal demineralization, resultant decreased calcium ion blood concentrations, and increases in the production and secretion of parathyroid hormone . Increases in parathyroid hormone stimulates the mobilization of skeletal calcium and the renal excretion of phosphorus . This enhanced mobilization of skeletal calcium leads towards porotic bone conditions .

Ordinarily, while vitamin D3 is made naturally via photochemical processes in the skin, both itself and vitamin D2 can be found in various food and pharmaceutical sources as dietary supplements. The principal biological function of vitamin D is the maintenance of normal levels of serum calcium and phosphorus in the bloodstream by enhancing the efficacy of the small intestine to absorb these minerals from the diet . At the liver, vitamin D3 or D2 is hydroxylated to 25-hydroxyvitamin D and then finally to the primary active metabolite 1,25-dihydroxyvitamin D in the kidney via further hydroxylation . This final metabolite binds to endogenous vitamin d receptors, which results in a variety of regulatory roles - including maintaining calcium balance, the regulation of parathyroid hormone, the promotion of the renal reabsorption of calcium, increased intestinal absorption of calcium and phosphorus, and increased calcium and phosphorus mobilization of calcium and phosphorus from bone to plasma to maintain balanced levels of each in bone and the plasma .

The mechanism of action for most of vitamin E's effects are still unknown. Vitamin E is an antioxidant, preventing free radical reactions with cell membranes. Though in some cases vitamin E has been shown to have pro-oxidant activity.

One mechanism of vitamin E's antioxidant effect is in the termination of lipid peroxidation. Vitamin E reacts with unstable lipid radicals, producing stable lipids and a relatively stable vitamin E radical. The vitamin E radical is then reduced back to stable vitamin E by reaction with ascorbate or glutathione.

Zinc has three primary biological roles: catalytic, structural, and regulatory. The catalytic and structural role of zinc is well established, and there are various noteworthy reviews on these functions. For example, zinc is a structural constituent in numerous proteins, inclusive of growth factors, cytokines, receptors, enzymes, and transcription factors for different cellular signaling pathways. It is implicated in numerous cellular processes as a cofactor for approximately 3000 human proteins including enzymes, nuclear factors, and hormones .

Zinc promotes resistance to epithelial apoptosis through cell protection (cytoprotection) against reactive oxygen species and bacterial toxins, likely through the antioxidant activity of the cysteine-rich metallothioneins .

In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF pathway, decreases NF-kappaB activation, leading to decreased gene expression and generation of tumor necrosis factor-alpha (TNF-alpha), IL-1beta, and IL-8 .

There are several mechanisms of action of zinc on acute diarrhea. Various mechanisms are specific to the gastrointestinal system: zinc restores mucosal barrier integrity and enterocyte brush-border enzyme activity, it promotes the production of antibodies and circulating lymphocytes against intestinal pathogens, and has a direct effect on ion channels, acting as a potassium channel blocker of adenosine 3-5-cyclic monophosphate-mediated chlorine secretion. Cochrane researchers examined the evidence available up to 30 September 2016 .

Zinc deficiency in humans decreases the activity of serum thymulin (a hormone of the thymus), which is necessary for the maturation of T-helper cells. T-helper 1 (Th(1)) cytokines are decreased but T-helper 2 (Th(2)) cytokines are not affected by zinc deficiency in humans [A342417].

The change of Th(1) to Th(2) function leads to cell-mediated immune dysfunction. Because IL-2 production (Th(1) cytokine) is decreased, this causes decreased activity of natural-killer-cell (NK cell) and T cytolytic cells, normally involved in killing viruses, bacteria, and malignant cells [A3424].

In humans, zinc deficiency may lead to the generation of new CD4+ T cells, produced in the thymus. In cell culture studies (HUT-78, a Th(0) human malignant lymphoblastoid cell line), as a result of zinc deficiency, nuclear factor-kappaB (NF-kappaB) activation, phosphorylation of IkappaB, and binding of NF-kappaB to DNA are decreased and this results in decreased Th(1) cytokine production .

In another study, zinc supplementation in human subjects suppressed the gene expression and production of pro-inflammatory cytokines and decreased oxidative stress markers [A3424]. In HL-60 cells (a human pro-myelocytic leukemia cell line), zinc deficiency increased the levels of TNF-alpha, IL-1beta, and IL-8 cytokines and mRNA. In such cells, zinc was found to induce A20, a zinc finger protein that inhibited NF-kappaB activation by the tumor necrosis factor receptor-associated factor pathway. This process decreased gene expression of pro-inflammatory cytokines and oxidative stress markers .

The exact mechanism of zinc in acne treatment is poorly understood. However, zinc is considered to act directly on microbial inflammatory equilibrium and facilitate antibiotic absorption when used in combination with other agents. Topical zinc alone as well as in combination with other agents may be efficacious because of its anti-inflammatory activity and ability to reduce P. acnes bacteria by the inhibition of P. acnes lipases and free fatty acid levels .

Dosage

Natures Plus Especially Yours dosage

Niacin can be administered as a single dose at bedtime, after a snack or meal and doses should be individualized according to patient response. Therapy with Niacin must be initiated at 500 mg in order to reduce the incidence and severity of side effects which may occur during early therapy.

Maintenance Dose: The daily dosage of Niacin should not be increased by more than 500 mg in any 4-week period. The recommended maintenance dose is 1000 mg (two 500 mg tablets or one 1000 mg tablet) to 2000 mg (two 1000 mg tablets or four 500 mg tablets) once daily at bedtime. Doses greater than 2000 mg daily are not recommended. Women may respond at lower Niacin doses than men.

Single-dose bioavailability studies have demonstrated that two of the 500 mg and one of the 1000 mg tablet strengths are interchangeable but three of the 500 mg and two of the 750 mg tablet strengths are not interchangeable.

Flushing of the skin may be reduced in frequency or severity by pretreatment with aspirin (up to the recommended dose of 325 mg taken 30 minutes prior to Niacin dose). Tolerance to this flushing develops rapidly over the course of several weeks. Flushing,pruritus, andgastrointestinaldistress are also greatly reduced by slowly increasing the dose of niacin and avoiding administration on an empty stomach. Concomitant alcoholic, hot drinks or spicy foods may increase the side effects of flushing and pruritus and should be avoided around the time of Niacin ingestion.

Equivalent doses of Niacin should not be substituted for sustained-release (modified-release, timed-release) niacin preparations or immediate-release (crystalline) niacin. Patients previously receiving other niacin products should be started with the recommended Niacin titration schedule, and the dose should subsequently be individualized based on patient response.

If Niacin therapy is discontinued for an extended period, reinstitution of therapy should include a titration phase.

For treating low levels of riboflavin (riboflavin deficiency) in adults: 5-30 mg of riboflavin (Vitamin B2) daily in divided doses.

For preventing migraine headaches: 400 mg of riboflavin (Vitamin B2) per day. It may take up to three months to get best results.

For preventing cataracts: a daily dietary intake of approximately 2.6 mg of riboflavin (Vitamin B2) has been used. A combination of 3 mg of riboflavin (Vitamin B2) plus 40 mg of niacin daily has also been used.

The daily recommended dietary allowances (RDAs) of riboflavin (Vitamin B2) are:

  • Infants 0-6 months: 0.3 mg
  • Infants 7-12 months: 0.4 mg
  • Children 1-3 years: 0.5 mg
  • Children 4-8 years: 0.6 mg
  • Children 9-13 years: 0.9 mg
  • Men 14 years or older: 1.3 mg
  • Women 14-18 years: 1 mg
  • Women over 18 years: 1.1 mg
  • Pregnant women: 1.4 mg
  • Breastfeeding women: 1.6 mg

Prophylaxis: 3 to 10 mg daily.

Mild chronic deficiency: 10 to 25 mg daily.

Severe deficiency: 200 to 300 mg daily.

Vitamin A deficiency For severe deficiency with corneal changes: 500,000 unit/day for 3 days, followed by 50,000 unit/day for 2 wk and then 10,000-20,000 unit/day for 2 mth as follow-up therapy.

For cases without corneal changes: 10,000-25,000 unit/day until clinical improvement occurs (usually 1 -2 wk).

Betterment of Cardiovascular health: 400 mg - 800 mg / day

Deficiency syndrome in adults: 200 mg - 400 mg / day

Deficiency syndrome in children: 200 mg / day

Thalassemia: 800 mg / day

Sickle-cell anemia: 400 mg / day

Betterment of Skin & Hair: 200 mg - 400 mg / day (Topical use is also established for beautification)

Chronic cold in adults: 200 mg / day

Niacin tablets should be taken whole and should not be broken, crushed or chewed before swallowing.

Side Effects

Niacin is generally well tolerated; adverse reactions have been mild and transient.The most frequent advers effects were flushing, itching, pruritis, nausea and GI upset, jaundice ,hypotension, tachycardia, increased serum blood glucose and uric acid levels, myalgia.

Get emergency medical help if you have signs of an allergic reaction: hives; difficult breathing; swelling of your face, lips, tongue, or throat. Riboflavin may cause your urine to turn a yellow-orange color, but this is usually not a harmful side effect.

Vitamin B1 does not have adverse effects when given orally, but in a few fatal cases anaphylactic reactions have occurred after intravenous administration of large doses (400 mg) in sensitive patients, especially children, and in one case following an intramuscular dose of 125 mg. The risk of such reactions increases with repeated administration of the drug by parenteral route. Transient mild soreness may occur at the site of intramuscular administration

Hypervitaminosis A characterised by fatigue, irritability, anorexia, weight loss, vomiting and other Gl disturbances, low-grade fever, hepatosplenomegaly, skin changes, alopoecia, dry hair, cracking and bleeding lips, SC swelling, nocturia, pains in bones and joints.

Overdoses (>1g) have been associated with minor side effects, including hypertension, fatigue, diarrhea and myopathy

Toxicity

Prolonged skin contact may cause irritation.

Oral LD50 for Cr (VI) is 135 - 175 mg/kg in mouse and 46 - 113 mg/kg in rat . Oral LD50 for Cr (III) in rat is >2000 mg/kg . LD50 of chromium (III) oxide in rats is reported to be > 5g/kg . Other LD50 values reported for rats include: 3.5 g/kg (CI 3.19-3.79 g/kg) for chromium sulphate; 11.3 g/kg for chromium (III) acetate; 3.3 g/kg for chromium nitrate; and 1.5 g/kg for chromium nitrate nonahydrate .

Acute overdose of chromium is rare and seriously detrimental effects of hexavalent chromium are primarily the result of chronic low-level exposure . In case of overdose with minimal toxicity following acute ingestion, treatment should be symptomatic and supportive . There is no known antidote for chromium toxicity.

Hexavalent chromium is a Class A carcinogen by the inhalation route of exposure and Class D by the oral route . The oral lethal dose in humans has been estimated to be 1-3 g of Cr (VI); oral toxicity most likely involves gastrointestinal bleeding rather than systemic toxicity . Chronic exposure may cause damage to the following organs: kidneys, lungs, liver, upper respiratory tract . Soluble chromium VI compounds are human carcinogens. Hexavalent chromium compounds were mutagenic in bacteria assays and caused chromosome aberrations in mammalian cells. There have been associations of increased frequencies of chromosome aberrations in lymphocytes from chromate production workers . In human cells in vitro, Cr (VI) caused chromosomal aberrations, sister chromatid exchanges and oxidative DNA damage .

Acute iron overdosage can be divided into four stages. In the first stage, which occurs up to six hours after ingestion, the principal symptoms are vomiting and diarrhea. Other symptoms include hypotension, tachycardia and CNS depression ranging from lethargy to coma. The second phase may occur at 6-24 hours after ingestion and is characterized by a temporary remission. In the third phase, gastrointestinal symptoms recur accompanied by shock, metabolic acidosis, coma, hepatic necrosis and jaundice, hypoglycemia, renal failure and pulmonary edema. The fourth phase may occur several weeks after ingestion and is characterized by gastrointestinal obstruction and liver damage. In a young child, 75 milligrams per kilogram is considered extremely dangerous. A dose of 30 milligrams per kilogram can lead to symptoms of toxicity. Estimates of a lethal dosage range from 180 milligrams per kilogram and upwards. A peak serum iron concentration of five micrograms or more per ml is associated with moderate to severe poisoning in many.

The recommended dietary allowance of magnesium ranges from 30 mg for infants to 420 mg for males between the age of 31 and 50. According to the institute of Medicine (IOM), the majority of adults can tolerate 350 mg of magnesium per day without experiencing adverse effects. Symptoms of magnesium toxicity include diarrhea and other gastrointestinal effects, thirst, muscle weakness, drowsiness, severe back and pelvic pain, hypotension, dizziness, confusion, difficulty breathing, lethargy, and deterioration of kidney function. Other more severe symptoms associated with magnesium overdose include loss of consciousness, respiratory arrest, cardiac arrhythmias and cardiac arrest.

Regular use of laxatives containing magnesium may lead to severe and even fatal hypermagnesemia.

Discontinuation of magnesium products including supplements, laxatives, and antacids is usually sufficient to manage mild cases of magnesium overdose; however, patients should also be screened for renal impairment.

In severe cases of magnesium overdose, patients may require supportive care and interventions including intravenous fluids and furosemide, IV calcium chloride or calcium gluconate, renal dialysis and artificial respiratory support.

Overdose of niacin may present with severe prolonged hypotension. Patients experiencing an overdose should be treated with supportive measures which may include intravenous fluids.

The oral LD50 in the mouse is 3720mg/kg, in the rabbit is 4550mg/kg, in the rat is 7000mg/kg, and the dermal LD50 in the rat is >2000mg/kg.

No Tolerable Upper Level Intake (UL) has been established for the vitamin.

The oral LD50 of potassium chloride in rats is 2600 mg/kg.

Overdose information

An overdose of potassium may result in hyperkalemia, and in some cases, death due to various causes. Signs and symptoms of an overdose of potassium are mainly cardiovascular, neurological and musculoskeletal in nature. Arrhythmia, changes in cardiac conduction, including astystole, bradycardia, heart block, ventral fibrillation, and ventricular tachycardia may occur. In addition, hypotension may also occur along with cardiac ECG changes. Muscular weakness and respiratory muscle paralysis may occur, in addition to paresthesia. In case of an overdose, discontinue potassium administration, reduce the dose, and monitor fluid levels and electrolyte concentrations in addition to acid-base balance. Corrective therapy, such as insulin administration or potassium binding drugs, may be required. Offer supportive care and resuscitation as deemed necessary.

Important note regarding hyperkalemia

Normally, hyperkalemia is asymptomatic and only detected by laboratory testing (at values of 6.5-8.0 mEq/L) and ECG changes (peaked T- waves, lost P-waves, ST depression, and a prolonged QT interval). Muscle paralysis and cardiac arrest may occur in the advanced stages of hyperkalemia, at potassium concentrations of 9-12 mEq/L.

Thiamine toxicity is uncommon; as excesses are readily excreted, although long-term supplementation of amounts larger than 3 gram have been known to cause toxicity. Oral mouse LD50 = 8224 mg/kg, oral rat LD50 = 3710 mg/kg.

Acute toxicity to vitamin A can occur when adults or children ingest >100x or >20x the RDA, respectively, over a period of hours or a few days. The RDA for vitamin A differs depending on age and sex and can range from 300 - 900 μg retinol activity equivalents (RAE) per day. Symptoms of acute systemic toxicity generally include mucocutaneous involvement (e.g. xerosis, cheilitis, skin peeling) and may involve mental status changes. Children are typically more susceptible to acute vitamin A toxicity - daily intakes of as little as 1500 IU/kg have been observed to result in toxicity.

Chronic vitamin A toxicity can develop following the long-term ingestion of high vitamin A doses. While there is a wide variation in the lowest toxic vitamin A dose, the ingestion of >25 000 IU daily for 6 years or 100,000 IU daily for 6 months is considered to be toxic. Chronic vitamin A toxicity can affect many organ systems and can lead to the development of osteoporosis and CNS effects (e.g. headaches).

The use of pharmacological or nutraceutical vitamin d and/or even excessive dietary intake of vitamin d is contraindicated in patients with hypercalcemia, malabsorption syndrome, abnormal sensitivity to the toxic effects of vitamin d, and hypervitaminosis D .

Hypersensitivity to vitamin d is one plausible etiologic factor in infants with idiopathic hypercalcemia - a case in which vitamin d use must be strictly restricted .

As vitamin d intake is available via fortified foods, dietary supplements, and clinical drug sources, serum concentrations and therapeutic dosages should be reviewed regularly and readjusted as soon as there is clinical improvement . Dosage levels are required to be individualized on an individual patient by patient basis as caution must be exercised to prevent the presence of too much vitamin d in the body and the various potentially serious toxic effects associated with such circumstances .

In particular, the range between therapeutic and toxic doses is quite narrow in vitamin d resistant rickets . When high therapeutic doses are used, progress should be followed with frequent blood calcium determinations .

When treating hypoparathyroidism, intravenous calcium, parathyroid hormone, and/or dihydrotachysterol may be required .

Maintenance of normal serum phosphorus levels by dietary phosphate restriction and/or administration of aluminum gels as intestinal phosphate binders in those patients with hyperphosphatemia as frequently seen in renal osteodystrophy is essential to prevent metastatic calcification .

Mineral oil interferes with the absorption of lipid-soluble vitamins, including vitamin d preparations .

The administration of thiazide diuretics to hypoparathyroid patients who are concurrently being treated with vitamin d can result in hypercalcemia .

At this time, no long term animal studies have been performed to evaluate vitamin potential for carcinogens, mutagenesis, or fertility .

As various animal reproduction studies have demonstrated fetal abnormalities in several species associated with hypervitaminosis D, the use of vitamin d in excess of the recommended dietary allowance during normal pregnancy should be avoided . The safety in excess of 400 USP units of vitamin d daily during pregnancy has not been established . The abnormalities observed are similar to the supravalvular aortic stenosis syndrome described in infants that is characterized by supravalvular aortic stenosis, elfin facies, and mental retardation .

In a nursing mother given large doses of vitamin D, 25-hydroxycholecalciferol appeared in the milk and caused hypercalcemia in her child. Caution is subsequently required when contemplating the use of vitamin d in a nursing woman, and the necessity of monitoring infants' serum calcium concentration if vitamin d is administered to a breastfeeding woman .

Adverse reactions associated with the use of vitamin d are primarily linked to having hypervitaminosis D occurring [FDA Lanel]. In particular, hypervitaminosis D is characterized by effects specific effects on specific organ systems. At the renal system, hypervitaminosis D can cause impairment of renal function with polyuria, nocturne, polydipsia, hypercalciuria, reversible asotemia, hypertension, nephrocalcinosis, generalized vascular calcification, or even irreversible renal insufficiency which may result in death . Elsewhere, hypervitaminosis D can also cause CNS mental retardation . At the level of soft tissues, it can widespread calcification of the soft tissues, including the heart, blood vessels, renal tubules, and lungs . In the skeletal system, bone demineralization (osteoporosis) in adults can occur while a decline in the average rate of linear growth and increased mineralization of bones, dwarfism, vague aches, stiffness, and weakness can occur in infants and children . Finally, hypervitaminosis D can also lead to nausea, anorexia, and constipation at the gastrointestinal level as well as mild acidosis, anemia, or weight loss via metabolic processes .

The LD(50) in animals is unknown .

There is no data available for effects in pregnancy, breast feeding, hepatic impairment, or renal impairment. However, it appears that the process of vitamin E elimination is strict and self regulating enough that vitamin E toxicity is exceedingly rare. Studies showing adverse effects from excess vitamin E generally involve people consuming more than 1000mg/day for weeks to months.

According to the Toxnet database of the U.S. National Library of Medicine, the oral LD50 for zinc is close to 3 g/kg body weight, more than 10-fold higher than cadmium and 50-fold higher than mercury .

The LD50 values of several zinc compounds (ranging from 186 to 623 mg zinc/kg/day) have been measured in rats and mice .

Precaution

Before instituting therapy with Niacin, an attempt should be made to control hyperlipidemia with appropriate diet, exercise, and weight reduction in obese patients and to treat other underlying medical problems. Patients with a past history of jaundice, hepatobiliary disease, or peptic ulcer should be observed closely during Niacin therapy. Frequent monitoring of liver function tests and blood glucose should be performed to ascertain that the drug is producing no adverse effects on these organ systems. Diabetic patients may experience a dose-related rise in glucose intolerance, the clinical significance of which is unclear. Diabetic or potentially diabetic patients should be observed closely. Adjustment of diet and/or hypoglycemic therapy may be necessary.

Caution should also be used when Niacin is used in patients with unstable angina or in the acute phase of MI, particularly when such patients are also receiving vasoactive drugs such as nitrates, calcium channel blockers or adrenergic blocking agents. Elevated uric acid levels have occurred with Niacin therapy, therefore use with caution in patients predisposed to gout. Niacin has been associated with small but statistically significant dose-related reductions in platelet count and increases in prothrombin time. Caution should be observed when Niacin is administered concomitantly with anticoagulants; prothrombin time and platelet counts should be monitored closely in such patients. Niacin has been associated with small but statistically significant, dose-related reductions in phosphorus levels (mean of -13% with 2000 mg). So phosphorus levels should be monitored periodically in patients at risk.

Cholestatic jaundice; fat-malabsorption conditions. Monitor patients closely for toxicity. Liver impairment and children.

Vitamin E may enhance the anticoagulant activity of anticoagulant drugs. Caution is advised in premature infants with high dose Vitamin E supplementation, because of reported risk of necrotizing enterocilitis.

Interaction

Niacin may potentiate the effects of ganglionic blocking agents and vasoactive drugs resulting in postural hypotension. Concomitant aspirin may decrease the metabolic clearance of nicotinic acid. The clinical relevance of this finding is unclear. About 98% of available Niacin was bound to colestipol, with 10 to 30% binding to cholestyramine. These results suggest that 4 to 6 hours, or as great an interval as possible, should elapse between the ingestion of bile acid-binding resins and the administration of Niacin.

Rate and extent of absorption may be affected by propantheline bromide.

No hazardous drug interactions have been reported. Vitamin B1 acts synergistically with other vitamins of the B-complex group and its potential for causing adverse effects is considerably reduced.

Decreased absorption with neomycin. Increased risk of hypervitaminosis A with synthetic retinoids eg, acitretin, isotretinoin and tretinoin. Increased risk of toxicity when used with alcohol.

Vitamin E may impair the absorption of Vitamin A. Vitamin K functions impairement happens at the level of prothrombin formation and potentiates the effect of Warfarin.

Volume of Distribution

Absorbed chromium is distributed to all tissues of the body and its distribution in the body depends on the species, age, and chemical form . Circulating Cr (III) following oral or parenteral administration of different compounds can be taken up by tissues and accumulates in the liver, kidney, spleen, soft tissue, and bone .

According to a pharmacokinetic review, the volume of distribution of magnesium sulphate when used to manage patients with pre-eclampsia and eclampsia ranged from 13.65 to 49.00 L.

Data regarding the volume of distribution of niacin is not readily available.

Potassium is present in almost all body tissues. Approximately 98% of potassium is maintained intracellularly in muscular tissue, the liver, and red blood cells. The remainder is distributed extracellularly.

0.41L/kg in premature neonates given a 20mg/kg intramuscular injection.

A pharmacokinetic study was done in rats to determine the distribution and other metabolic indexes of zinc in two particle sizes. It was found that zinc particles were mainly distributed to organs including the liver, lung, and kidney within 72 hours without any significant difference being found according to particle size or rat gender .

Elimination Route

Systemic - approximately 50%

Chromium compounds are both absorbed by the lung and the gastrointestinal tract. Oral absorption of chromium compounds in humans can range between 0.5% and 10%, with the hexavalent (VI) chromium more easily absorbed than the trivalent (III) form . Absorption of chromium from the intestinal tract is low, ranging from less than 0.4% to 2.5% of the amount consumed . Vitamin C and the vitamin B niacin is reported to enhance chromium absorption .

Most hexavalent Cr (VI) undergoes partial intragastric reduction to Cr (III) upon absorption, which is an action mainly mediated by sulfhydryl groups of amino acids . Cr (VI) readily penetrates cell membranes and chromium can be found in both erythrocytes and plasma after gastrointestinal absorption of Cr (IV). In comparison, the presence of chromium is limited to the plasma as Cr (III) displays poor cell membrane penetration . Once transported through the cell membrane, Cr (VI) is rapidly reduced to Cr (III), which subsequently binds to macromolecules or conjugate with proteins. Cr (III) may be bound to transferrin or other plasma proteins, or as complexes, such as glucose tolerance factor (GTF).

The efficiency of absorption depends on the salt form, the amount administered, the dosing regimen and the size of iron stores. Subjects with normal iron stores absorb 10% to 35% of an iron dose. Those who are iron deficient may absorb up to 95% of an iron dose.

Approximately 24-76% of ingested magnesium is absorbed in the gastrointestinal tract, primarily via passive paracellular absorption in the small intestine.

In patients with chronic kidney disease, the Cmax is 0.06µg/mL for a 500mg oral dose, 2.42µg/mL for a 1000mg oral dose, and 4.22µg/mL for a 1500mg oral dose. The Tmax is 3.0 hours for a 1000mg or 1500mg oral dose. The AUC is 1.44µg*h/mL for a 500mg oral dose, 6.66µg*h/mL for a 1000mg oral dose, and 12.41µg*h/mL for a 1500mg oral dose. These values did not drastically differ in patients requiring dialysis.

Dietary pantothenic acid is primarily in the form of CoA or ACP and must be converted into free pantothenic acid for absorption. CoA and ACP are hydrolyzed into 4'-phosphopantetheine which is then dephosphorylated into pantetheine and subsequently hydrolyzed again to free pantothenic acid by Pantetheinase in the intestinal lumen. Free pantothenic acid is absorbed into intestinal cells via a saturable, sodium-dependent active transport system with passive diffusion acting as a secondary pathway. As intake increases up to 10-fold absorption rate can decrease to as low as 10% due to transporter saturation.

When taken orally from a dietary source, potassium is mainly absorbed via passive diffusion in the small intestine. Approximately 90% of potassium is absorbed, and maintains concentrations both inside and outside cells. The kidneys can adapt to variable potassium intake in healthy individuals, but a minimum of 5 mmol (about 195 mg) dietary potassium is measured to be excreted in the urine.

Some studies have measured the absorption various forms of potassium from dietary supplements. Results from a clinical trial in 2016 showed that potassium gluconate supplements are 94% absorbed, which is similar to the absorption rate from potatoes. An older study advised that liquid forms of potassium are absorbed a few hours post-administration. Enteric coated tablets of potassium chloride are not absorbed as rapidly as liquid forms, due to their delayed release design.

Vitamin B2 is readily absorbed from the upper gastrointestinal tract.

Absorbed mainly from duodenum, by both active and passive processes

Readily absorbed from the normal gastrointestinal tract

Vitamin D3 and D2 are readily absorbed from the small intestine (proximal or distal) .

10-33% of deuterium labelled vitamin E is absorbed in the small intestine. Absorption of Vitamin E is dependant upon absorption of the fat in which it is dissolved. For patients with poor fat absorption, a water soluble form of vitamin E may need to be substituted such as tocopheryl polyethylene glycol-1000 succinate.

In other studies the oral bioavailability of alpha-tocopherol was 36%, gamma-tocotrienol was 9%. The time to maximum concentration was 9.7 hours for alpha-tocopherol and 2.4 hours for gamma-tocotrienol.

Zinc is absorbed in the small intestine by a carrier-mediated mechanism . Under regular physiologic conditions, transport processes of uptake do not saturate. The exact amount of zinc absorbed is difficult to determine because zinc is secreted into the gut. Zinc administered in aqueous solutions to fasting subjects is absorbed quite efficiently (at a rate of 60-70%), however, absorption from solid diets is less efficient and varies greatly, dependent on zinc content and diet composition .

Generally, 33% is considered to be the average zinc absorption in humans . More recent studies have determined different absorption rates for various populations based on their type of diet and phytate to zinc molar ratio. Zinc absorption is concentration dependent and increases linearly with dietary zinc up to a maximum rate [L20902].

Additionally zinc status may influence zinc absorption. Zinc-deprived humans absorb this element with increased efficiency, whereas humans on a high-zinc diet show a reduced efficiency of absorption .

Half Life

The elimination half-life of hexavalent chromium is 15 to 41 hours .

Magnesiums biologic half-life is reported to be approximately 1000 hours or 42 days.

The half life of niacin is 0.9h, nicotinuric acid is 1.3h, and nicotinamide is 4.3h.

In one clinical study, the apparent half-life of oral potassium was between 1.6 and 14 hours. A radio tracer study determined that the biological half-life of radiolabeled potassium ranges from 10 to 28 days.

66-84 minutes

1.9 hours

Although certain studies suggest the half-life of 1,25-hydroxyvitamin D3 may be approximately 15 hours, the half-life of 25-hydroxyvitamin D3 appears to have a half-life of about 15 days . Intriguingly however, the half-lives of any particular administration of vitamin d can vary and in general the half-lives of vitamin D2 metabolites have been demonstrated to be shorter overall than vitamin D3 half-lives with this being affected by vitamin d binding protein concentrations and genotype in particular individuals .

44 hours in premature neonates given a 20mg/kg intramuscular injection. 12 minutes in intravenous injection of intestinal lymph.

The half-life of zinc in humans is approximately 280 days .

Clearance

Excretion of chromium is via the kidneys ranges from 3 to 50 μg/day . The 24-hour urinary excretion rates for normal human subjects are reported to be 0.22 μg/day .

Data regarding the clearance of niacin is not readily available.

Potassium is freely filtered in the kidney with most of an ingested amount being reabsorbed into the circulation (70%–80%) by the proximal tubule and loop of Henle. Secretion of potassium by the distal nephron in the kidney varies and dependent on the intracellular potassium concentration, luminal potassium concentration concentration, in addition to cellular permeability.

Some studies propose an estimated clearance rate for 1,25-dihydroxyvitamin D as 31 +/- 4 ml/min in healthy adults .

6.5mL/hr/kg in premature neonates given a 20mg/kg intramuscular injection.

In one study of healthy patients, the clearance of zinc was found to be 0.63 ± 0.39 μg/min .

Elimination Route

The kidney excretes 250 mmol a day in urine, and resorbs 245 mmol, leading to a net loss in the urine of 5 mmol/d.

Absorbed chromium is excreted mainly in the urine, accounting for 80% of total excretion of chromium; small amounts are lost in hair, perspiration and bile . Chromium is excreted primarily in the urine by glomerular filtration or bound to a low molecular-weight organic transporter .

The majority of magnesium is excreted renally.

69.5% of a dose of niacin is recovered in urine. 37.9% of the recovered dose was N-methyl-2-pyridone-5-carboxamide, 16.0% was N-methylnicotinamide, 11.6% was nicotinuric acid, and 3.2% was niacin.

Potassium is excreted primarily in the urine, excreted in small amounts in the stool, and negligibly in perspiration (sweat). The renal system regulates potassium excretion according to dietary intake. Potassium excretion rises quickly in healthy patients after ingestion unless body stores have been depleted. Potassium undergoes glomerular filtration, tubular reabsorption, and distal tubular secretion. Renal clearance of potassium shifts between net tubular secretion and reabsorption, depending on the clinical circumstances.

The primary excretion route of vitamin D is via the bile into the feces .

Alpha tocopherol is excreted in urine as well as bile in the feces mainly as a carboxyethyl-hydrochroman (CEHC) metabolite, but it can be excreted in it's natural form .

The excretion of zinc through gastrointestinal tract accounts for approximately one-half of all zinc eliminated from the body .

Considerable amounts of zinc are secreted through both biliary and intestinal secretions, however most is reabsorbed. This is an important process in the regulation of zinc balance. Other routes of zinc excretion include both urine and surface losses (sloughed skin, hair, sweat) .

Zinc has been shown to induce intestinal metallothionein, which combines zinc and copper in the intestine and prevents their serosal surface transfer. Intestinal cells are sloughed with approximately a 6-day turnover, and the metallothionein-bound copper and zinc are lost in the stool and are thus not absorbed .

Measurements in humans of endogenous intestinal zinc have primarily been made as fecal excretion; this suggests that the amounts excreted are responsive to zinc intake, absorbed zinc and physiologic need .

In one study, elimination kinetics in rats showed that a small amount of ZnO nanoparticles was excreted via the urine, however, most of the nanoparticles were excreted via the feces .

Pregnancy & Breastfeeding use

Niacin cannot be used in pregnancy and lactation because of a lack of information.

Riboflavin is LIKELY SAFE for pregnant or breast-feeding women when taken in the amounts recommended. The recommended amounts are 1.4 mg per day for pregnant women and 1.6 mg per day in breast-feeding women. Riboflavin is POSSIBLY SAFE when taken by mouth in larger doses, short-term. Some research shows that riboflavin is safe when taken at a dose of 15 mg once every 2 weeks for 10 weeks.

The drug may be given safely to neonates, children, pregnant and lactating women and elderly patients.

Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).

Use in pregnancy: Vitamin E may be used in pregnancy in the normally recommended dose but the safety of high dose therapy has not been established.

Use in lactation: There appears to be no contraindication to breast feeding by mothers taking the normally recommended dose.

Contraindication

Niacin is contraindicated in patients with a known hypersensitivity to Niacin or any component of this medication, significant or unexplained hepatic dysfunction, active peptic ulcer disease or arterial bleeding.

There is no absolute contraindication but the risk of anaphylaxis is increased by repeated parenteral administration. Mild allergic phenomena, such as sneezing or mild asthma are warning signs that further may give rise to anaphylactic shock. To avoid this possibility it is advisable to start a second course of injection with a dose considerably lower than that previously used. Because of the above, vitamin B1 injection should not be given intravenously except in the case of comatose patients. Once thiamine deficiency is corrected there is no need for parenteral administration or for the administration of amounts in excess of daily requirement.

Hypervitaminosis A; pregnancy (dose exceeding RDA).

No known contraindications found.

Special Warning

Use in Children: Vitamin E is safe for children

Acute Overdose

Supportive measures should be undertaken in the event of an overdosage. Symptoms may include nausea, dizziness, itching, vomiting, upset stomach, and flushing

Large doses of vitamin E (more than 1 gm/day) have been reported to increase bleeding tendency in vitamin K deficient patients such as those taking oral anticoagulants.

Storage Condition

Store at 15-30° C.

Thiamine injection should be protected from light and moisture.

Store at a cool and dry place, Protect from light and moisture.

Innovators Monograph

You find simplified version here Natures Plus Especially Yours


*** Taking medicines without doctor's advice can cause long-term problems.
Share