Nutrimax B Complex Uses, Dosage, Side Effects and more

A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk.

Biotin is a water-soluble B-complex vitamin which is composed of an ureido ring fused with a tetrahydrothiophene ring, which attaches a valeric acid substituent at one of its carbon atoms. Biotin is used in cell growth, the production of fatty acids, metabolism of fats, and amino acids. It plays a role in the Kreb cycle, which is the process in which energy is released from food. Biotin not only assists in various metabolic chemical conversions, but also helps with the transfer of carbon dioxide. Biotin is also helpful in maintaining a steady blood sugar level. Biotin is often recommended for strengthening hair and nails. Consequenty, it is found in many cosmetic and health products for the hair and skin. Biotin deficiency is a rare nutritional disorder caused by a deficiency of biotin. Initial symptoms of biotin deficiency include: Dry skin, Seborrheic dermatitis, Fungal infections, rashes including erythematous periorofacial macular rash, fine and brittle hair, and hair loss or total alopecia. If left untreated, neurological symptoms can develop, including mild depression, which may progress to profound lassitude and, eventually, to somnolence; changes in mental status, generalized muscular pains (myalgias), hyperesthesias and paresthesias. The treatment for biotin deficiency is to simply start taking some biotin supplements. A lack of biotin in infants will lead to a condition called seborrheic dermatitis or "cradle cap". Biotin deficiencies are extremely rare in adults but if it does occur, it will lead to anemia, depression, hair loss, high blood sugar levels, muscle pain, nausea, loss of appetite and inflamed mucous membranes.

A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism.

This compound is needed for good nerve conduction throughout the CNS (central nervous system) as it is a precursor to acetylcholine (ACh). Choline is also needed for gallbladder regulation, liver function and lecithin (a key lipid) formation. Choline also aids in fat and cholesterol metabolism and prevents excessive fat build up in the liver. Choline has been used to mitigate the effects of Parkinsonism and tardive dyskinesia. Choline deficiencies may result in excessive build-up of fat in the liver, high blood pressure, gastric ulcers, kidney and liver dysfunction and stunted growth.

Inositol is a collection of nine different stereoisomers but the name is usually used to describe only the most common type of inositol, myo-inositol. Myo-inositol is the cis-1,2,3,5-trans-4,6-cyclohexanehexol and it is prepared from an aqueous extract of corn kernels by precipitation and hydrolysis of crude phytate. These molecules have structural similarities to glucose and are involved in cellular signaling. It is considered a pseudovitamin as it is a molecule that does not qualify to be an essential vitamin because even though its presence is vital in the body, a deficiency in this molecule does not translate into disease conditions. Inositol can be found as an ingredient of OTC products by Health Canada but all current product whose main ingredient is inositol are discontinued. By the FDA, inositol is considered in the list of specific substances affirmed as generally recognized as safe (GRAS).

Inositol can stimulate glucose uptake in skeletal muscle cells which allows the decrease in blood sugar levels. This effect is later seen as a reduction in urine glucose concentration and indicates a decrease in high blood sugar levels.

In PCOS, the administration of inositol has produced the remission of symptoms as well as a reduction in male hormone secretion, a regulation of the cholesterol level, and a more efficient fat breakdown which allow to a significant reduction on body mass and appetite.

Trade Name Nutrimax B Complex
Generic Vitamin B + vitamin B + vitamin B + vitamin B + vitamin B + vitamin B + asam folat + biotin + inositol + PABA + choline
Weight 150mg, 250mg, 350mg, 550mg, 650mg, 1250mcg, 400mcg, 50mcg, 50mg, 50mg, 50mg
Type Tablet
Therapeutic Class
Manufacturer PT Suryaprana Nutrisindo
Available Country Indonesia
Last Updated: January 7, 2025 at 1:49 am

Uses

Biotin is a B-complex vitamin found in many multivitamin products.

For nutritional supplementation, also for treating dietary shortage or imbalance.

Choline is a nutrient found in a wide variety of vitamins including pre-natal formulations.

For nutritional supplementation, also for treating dietary shortage or imbalance

Inositol is an ingredient found in a variety of nutritional products.

Inositol may be used in food without any limitation. As a drug, inositol is used as a nutrient supplement in special dietary foods and infant formula. As it presents a relevant role in ensuring oocyte fertility, inositol has been studied for its use in the management of polycystic ovaries. Inositol is also being researched for the treatment of diabetes, prevention of metabolic syndrome, aid agent for weight loss, treatment of depression, psychiatric disorder and anxiety disorder and for prevention of cancer.

Nutrimax B Complex is also used to associated treatment for these conditions: Vitamin Deficiency, Nutritional supplementationNutritional supplementation

How Nutrimax B Complex works

Biotin is necessary for the proper functioning of enzymes that transport carboxyl units and fix carbon dioxide, and is required for various metabolic functions, including gluconeogenesis, lipogenesis, fatty acid biosynthesis, propionate metabolism, and catabolism of branched-chain amino acids.

Choline is a major part of the polar head group of phosphatidylcholine. Phosphatidylcholine's role in the maintenance of cell membrane integrity is vital to all of the basic biological processes: information flow, intracellular communication and bioenergetics. Inadequate choline intake would negatively affect all these processes. Choline is also a major part of another membrane phospholipid, sphingomyelin, also important for the maintenance of cell structure and function. It is noteworthy and not surprising that choline deficiency in cell culture causes apoptosis or programmed cell death. This appears to be due to abnormalities in cell membrane phosphatidylcholine content and an increase in ceramide, a precursor, as well as a metabolite, of sphingomyelin. Ceramide accumulation, which is caused by choline deficiency, appears to activate Caspase, a type of enzyme that mediates apoptosis. Betaine or trimethylglycine is derived from choline via an oxidation reaction. Betaine is one of the factors that maintains low levels of homocysteine by resynthesizing L-methionine from homocysteine. Elevated homocysteine levels are a significant risk factor for atherosclerosis, as well as other cardiovascular and neurological disorders. Acetylcholine is one of the major neurotransmitters and requires choline for its synthesis. Adequate acetylcholine levels in the brain are believed to be protective against certain types of dementia, including Alzheimer's disease.

The mechanism of action of inositol in brain disorders is not fully understood but it is thought that it may be involved in neurotransmitter synthesis and it is a precursor to the phosphatidylinositol cycle. The change that occurs in the cycle simulates when the postsynaptic receptor is activated but without activating the receptor. This activity provokes a fake activation which regulated the activity of monoamines and other neurotransmitters.

Reports have shown that insulin resistance plays a key role in the clinical development of PCOS. The presence of hyperinsulinemia can induce an excess in androgen production by stimulating ovaries to produce androgens and by reducing the sex hormone binding globulin serum levels. One of the mechanisms of insulin deficiency is thought to be related to a deficiency in inositol in the inositolphosphoglycans. The administration of inositol allows it to act as a direct messenger of the insulin signaling and improves glucose tissue uptake. This mechanism is extrapolated to its functions in diabetes treatment, metabolic syndrome, and weight loss.

In cancer, the mechanism of action of inositol is not fully understood. It is hypothesized that the administration of inositol increases the level of lower-phosphate inositol phosphates why can affect cycle regulation, growth, and differentiation of malignant cells. On the other hand, the formation of inositol hexaphosphate after administration of inositol presents antioxidant characteristics by the chelation of ferric ions and suppression of hydroxyl radicals.

Toxicity

Prolonged skin contact may cause irritation.

Oral rat LD50: 3400 mg/kg

Consumption of high doses of inositol is reported to only cause some gastrointestinal effects.

Volume of Distribution

The pharmacokinetic profile of inositol was studied in preterm infants and the estimated volume of distribution was reported to be 0.5115 L/kg.

Elimination Route

Systemic - approximately 50%

Inositol is absorbed from the small intestine. In patients with inositol deficiency, the maximal plasma concentration after oral administration of inositol is registered to be of 4 hours. Inositol is taken up by the tissues via sodium-dependent inositol co-transporter which also mediates glucose uptake. Oral ingestion of inositol is registered to generate a maximal plasma concentration of 36-45 mcg.

Half Life

The pharmacokinetic profile of inositol was studied in preterm infants and the estimated elimination half-life was reported to be of 5.22 hours.

Clearance

The pharmacokinetic profile of inositol was studied in preterm infants and the estimated clearance rate was reported to be 0.0679 L.kg/h.

Elimination Route

Most of the administered dose is excreted in urine.

Innovators Monograph


*** Taking medicines without doctor's advice can cause long-term problems.
Share