Oxtriphylline and guaifenesin
Oxtriphylline and guaifenesin Uses, Dosage, Side Effects, Food Interaction and all others data.
Guaifenesin possesses a storied history, having been originally formally approved by the US FDA in 1952 and continues to be one of very few - if not perhaps the only drug that is readily available and used as an expectorant . Since that time the agent has been a combination component of various prescription and non-prescription over-the-counter cough and cold products and is currently a widely available over-the-counter generic medication . Although it is principally believed that guaifenesin elicits an action to facilitate productive cough to manage chest congestion , it is not known whether the agent can reliably mitigate coughing.
Regardless, on March 1, 2007, the FDA received a petition asking the FDA to notify the public that some antitussives, expectorants, decongestants, antihistamines, and cough/cold combinations are not known to be safe and effective in children under the age of 6 years . After the negotiation between FDA and major manufacturers, a voluntary transition of labels for not using guaifenesin in children under the age of 4 years was endorsed by FDA in 2008 .
Furthermore, there has also been contemporary research to suggest that guaifenesin possesses and is capable of demonstrating anticonvulsant and muscle relaxant effects to some degree possibly by acting as an NMDA receptor antagonist .
Oxtriphylline is the choline salt form of theophylline. Once in the body, theophylline is released and acts as a phosphodiesterase inhibitor, adenosine receptor blocker, and histone deacetylase activator. Its main physiological reponse is to dilate the bronchioles. As such, oxytriphylline is indicated mainly for asthma, bronchospasm, and COPD (i.e. all the same indications as the other theophyllines). It is marketed under the name Choledyl SA, and several forms of oxytriphylline have been discontinued. In the US, oxtriphylline is no longer available.
Oxtriphylline is a bronchodilator. Oxtriphylline works in several ways: it relaxes muscles in your lungs and chest to allow more air in, decreases the sensitivity of your lungs to allergens and other substances that cause inflammation, and increases the contractions of your diaphragm to draw more air into the lungs.
Trade Name | Oxtriphylline and guaifenesin |
Generic | Guaifenesin + oxtriphylline |
Type | Oral |
Therapeutic Class | |
Manufacturer | |
Available Country | United States |
Last Updated: | September 19, 2023 at 7:00 am |
Uses
Guaifenesin is an expectorant commonly found in OTC products for the symptomatic relief from congested chests and coughs associated with cold, bronchitis, and/or other breathing illnesses.
Guaifenesin is an expectorant that is indicated for providing temporary symptomatic relief from congested chests and coughs which may be due to a cold, bronchitis, and/or other breathing illnesses .
Oxtriphylline is a bronchodilator used for the treatment of asthma, bronchitis, COPD, and emphysema.
Used to treat the symptoms of asthma, bronchitis, COPD, and emphysema.
Oxtriphylline and guaifenesin is also used to associated treatment for these conditions: Allergic Reaction, Asthma, Asthma, Allergic, Bronchial Asthma, Bronchitis, Bronchospasm, Chronic Bronchitis, Chronic Obstructive Respiratory Diseases, Common Cold, Cough, Cough caused by Common Cold, Coughing caused by Allergies, Coughing caused by Flu caused by Influenza, Drug Allergy, Emphysema, Fever, Flu caused by Influenza, Food Allergy, Headache, House dust allergy, Irritative cough, Laryngitis, Nasal Congestion, Nasal Congestion caused by Common Cold, Phlegm, Pollen Allergy, Productive cough, Rash, Rhinorrhoea, Sneezing, Sore Throat, Tracheitis, Urticaria, Whooping Cough, Acute Rhinitis, Chest congestion, Chills occurring with fever, Dry cough, Excess mucus or phlegm, Mild to moderate pain, Minor aches and pains, Airway secretion clearance therapy, ExpectorantBronchoconstriction
How Oxtriphylline and guaifenesin works
Although the exact mechanism of action of guaifenesin may not yet be formally or totally elucidated, it is believed that expectorants like guaifenesin function by increasing mucus secretion . Moreover, it is also further proposed that such expectorants may also act as an irritant to gastric vagal receptors, and recruit efferent parasympathetic reflexes that can elicit glandular exocytosis that is comprised of a less viscous mucus mixture . Subsequently, these actions may provoke coughing that can ultimately flush difficult to access, congealed mucopurulent material from obstructed small airways to facilitate a temporary improvement for the individual .
Consequently, while it is generally proposed that guaifenesin functions as an expectorant by helping to loosen phlegm (mucus) and thin bronchial secretions to rid the bronchial passageways of bothersome mucus and make coughs more productive, there has also been research to suggest that guaifenesin possesses and is capable of demonstrating anticonvulsant and muscle relaxant effects to some degree possibly by acting as an NMDA receptor antagonist .
Oxtriphylline is a choline salt of theophylline. After ingestion, theophylline is released from oxytriphylline, and theophylline relaxes the smooth muscle of the bronchial airways and pulmonary blood vessels and reduces airway responsiveness to histamine, methacholine, adenosine, and allergen. Theophylline competitively inhibits type III and type IV phosphodiesterase (PDE), the enzyme responsible for breaking down cyclic AMP in smooth muscle cells, possibly resulting in bronchodilation. Theophylline also binds to the adenosine A2B receptor and blocks adenosine mediated bronchoconstriction. In inflammatory states, theophylline activates histone deacetylase to prevent transcription of inflammatory genes that require the acetylation of histones for transcription to begin.
Toxicity
The most prevalent signs and symptoms associated with an overdose of guaifenesin have been nausea and vomiting .
Although adequate and well-controlled studies in pregnant women have not been performed, the Collaborative Perinatal Project monitored 197 mother-child pairs exposed to guaifenesin during the first trimester . An increased occurrence of inguinal hernias was found in the neonates . However, congenital defects were not strongly associated with guaifenesin use during pregnancy in 2 large groups of mother-child pairs .
Moreover, guaifenesin is excreted in breast milk in small quantities . Subsequently, caution should be exercised by balancing the potential benefit of treatment against any possible risks .
Additionally, an LD50 value of 1510 mg/kg (rat, oral) has been reported for guaifenesin .
Symptoms of toxicity include abdominal pain (continuing or severe), confusion or change in behavior, convulsions (seizures), dark or bloody vomit, diarrhea, dizziness or lightheadedness, fast and/or irregular heartbeat, nervousness or restlessness (continuing), and trembling (continuing).
Volume of Distribution
The geometric mean apparent volume of distribution of guaifenesin determined in healthy adult subjects is 116L (CV=45.7%) .
Theophylline has an apparent volume of distribution of 0.3–0.7 L/kg in children and adults, and the Vd is about twice that of an adult in premature infants.
Elimination Route
Studies have shown that guaifenesin is well absorbed from and along the gastrointestinal tract after oral administration .
After ingestion, theophylline is released from oxytriphylline in the acidic environment of the stomach.
Half Life
The half-life in plasma observed for guaifenesin is approximately one hour .
The serum half life varies greatly between patients and in age. The half life range for a healthy, nonsmoking adult is 3-12.8 hours, for children is 1.5–9.5 hours, and for for premature infants is 15–58 hours.
Clearance
The mean clearance recorded for guaifenesin is about 94.8 L/hr (CV=51.4%) .
Theophylline has an average clearance in children (over 6 months) of 1.45 mL/kg per minute, and in healthy, nonsmoking adults of 0.65 mL/kg per hour.
Elimination Route
After administration, guaifenesin is metabolized and then largely excreted in the urine .
The kidneys are the main route of elimination for both theophylline and its metabolites, but some unchanged theophylline is eliminated in the feces.
Innovators Monograph
You find simplified version here Oxtriphylline and guaifenesin