Pifcal Plus

Pifcal Plus Uses, Dosage, Side Effects, Food Interaction and all others data.

Calcium gluconate is used to prevent or treat negative calcium balance. It also helps facilitate nerve and muscle performance as well as normal cardiac function.

Calcium Gluconate is the gluconate salt of calcium. An element or mineral necessary for normal nerve, muscle, and cardiac function, calcium as the gluconate salt helps to maintain calcium balance and prevent bone loss when taken orally. This agent may also be chemopreventive for colon and other cancers.

Calcium is used to prevent or treat negative calcium balance. It also helps facilitate nerve and muscle performance as well as normal cardiac function. Bone mineral component; cofoactor in enzymatic reactions, essential for neurotransmission, muscle contraction, and many signal transduction pathways.

Both components of calcium lactate, calcium ion and lactic acid, play essential roles in the human body as a skeletal element an energy source, respectively .

Vitamin D is essential for normal bone growth and development and to maintain bone density. It is also necessary for utilization of both Calcium and Phosphorus. Vitamin D acts as a hormone and increases reabsorption of Calcium and Phosphorus by the kidneys and increased bone turnover.

The in vivo synthesis of the predominant two biologically active metabolites of vitamin D occurs in two steps. The first hydroxylation of vitamin D3 cholecalciferol (or D2) occurs in the liver to yield 25-hydroxyvitamin D while the second hydroxylation happens in the kidneys to give 1, 25-dihydroxyvitamin D . These vitamin D metabolites subsequently facilitate the active absorption of calcium and phosphorus in the small intestine, serving to increase serum calcium and phosphate levels sufficiently to allow bone mineralization . Conversely, these vitamin D metabolites also assist in mobilizing calcium and phosphate from bone and likely increase the reabsorption of calcium and perhaps also of phosphate via the renal tubules . There exists a period of 10 to 24 hours between the administration of cholecalciferol and the initiation of its action in the body due to the necessity of synthesis of the active vitamin D metabolites in the liver and kidneys . It is parathyroid hormone that is responsible for the regulation of such metabolism at the level of the kidneys .

Vitamin B12 (cyanocobalamin) is required for the maintenance of normal erthropoiesis, nucleprotein and myelin synthesis, cell reproduction and normal growth; Coenzyme; metabolic functions include protein synthesis and carbohydrate metabolism. Plays role in cell replication and hematopoiesis.

General effects

Cyanocobalamin corrects vitamin B12 deficiency and improves the symptoms and laboratory abnormalities associated with pernicious anemia (megaloblastic indices, gastrointestinal lesions, and neurologic damage). This drug aids in growth, cell reproduction, hematopoiesis, nucleoprotein, and myelin synthesis. It also plays an important role in fat metabolism, carbohydrate metabolism, as well as protein synthesis. Cells that undergo rapid division (for example, epithelial cells, bone marrow, and myeloid cells) have a high demand for vitamin B12 .

Parenteral cyanocobalamin effects

Trade Name Pifcal Plus
Generic Calcium Gluconate + Calcium Lactate + Cholecalciferol + Cyanocobalamin + L-lysine
Weight vit d3,
Type Syrup, Tablet
Therapeutic Class
Manufacturer Pifer Pharmaceuticals Pvt Ltd
Available Country India
Last Updated: September 19, 2023 at 7:00 am
Pifcal Plus
Pifcal Plus

Uses

Calcium Gluconate is used for Antidote in severe hypermagnesaemia, Severe hyperkalaemia, Hypocalcaemic tetany, Severe acute hypocalcaemia, Hypocalcaemia and calcium deficiency states

Calcium Lactate is used for heartburn, calcium supplement, calcium deficiencies.

Vitamin D is used to treat and prevent bone disorders (such as rickets, osteomalacia). Vitamin D is made by the body when skin is exposed to sunlight. Sunscreen, protective clothing, limited exposure to sunlight, dark skin, and age may prevent getting enough vitamin D from the sun.

Vitamin D with calcium is used to treat or prevent bone loss (osteoporosis). Vitamin D is also used with other medications to treat low levels of calcium or phosphate caused by certain disorders (such as hypoparathyroidism, pseudohypoparathyroidism, familial hypophosphatemia). It may be used in kidney disease to keep calcium levels normal and allow normal bone growth.

This preparation is used for Pernicious anemia,Vitamin B12 deficiency due to low intake from food,Thyrotoxicosis, Hemorrhage, Malignancy, Liver or kidney disease,Gastric bypass surgery, Total or partial gastrectomy, Gluten enteropathy or sprue, Folic acid deficiency, Macrocytic anaemia

Pifcal Plus is also used to associated treatment for these conditions: Bone and tooth decay, Bone and tooth growth, Calcium Deficiency, Hypocalcemia, Nutritional Rickets, Osteomalacia, Osteoporosis, Otospongiosis, Postmenopausal Osteoporosis, Vitamin D Insufficiency, Vitamin D Resistant RicketsCalcium DeficiencyCalcium and Vitamin D Deficiencies, Deficiency of Vitamin D3, Deficiency, Vitamin A, Deficiency, Vitamin D, Fracture Bone, Hip Fracture, Hypoparathyroidism, Hypophosphatemia, Familial, Menopause, Osteomalacia, Osteoporosis, Postmenopausal Osteoporosis, Vertebral Fractures, Vitamin D Resistant Rickets, Vitamin Deficiency, Severe Bone Resorption, Spine fracture, Calcium supplementation, Nutritional supplementation, Vitamin D Supplementation, Vitamin supplementationAnemia, Anemia, Pernicious, Combined Vitamin B1 and B12 deficiency, Convalescence, Diabetic Neuropathies, Folate deficiency, Iron Deficiency Anemia (IDA), Neuritis, Vitamin B1 deficiency, Vitamin B12 Deficiency, Vitamin B12 concentration, Vitamin B6 Deficiency, Vitamin Deficiency, Nutritional supplementation, Vitamin supplementation

How Pifcal Plus works

Calcium is essential for the functional integrity of the nervous, muscular, and skeletal systems. It plays a role in normal cardiac function, renal function, respiration, blood coagulation, and cell membrane and capillary permeability. Also, calcium helps to regulate the release and storage of neurotransmitters and hormones, the uptake and binding of amino acids, absorption of vitamin B 12, and gastrin secretion. The major fraction (99%) of calcium is in the skeletal structure primarily as hydroxyapatite, Ca 10(PO 4) 6(OH) 2; small amounts of calcium carbonate and amorphous calcium phosphates are also present. The calcium of bone is in a constant exchange with the calcium of plasma. Since the metabolic functions of calcium are essential for life, when there is a disturbance in the calcium balance because of dietary deficiency or other causes, the stores of calcium in bone may be depleted to fill the body's more acute needs. Therefore, on a chronic basis, normal mineralization of bone depends on adequate amounts of total body calcium.

In aqueous environments such as the gastrointestinal (GI) tract, calcium lactate will dissociate into calcium cation and lactic acid anions, the conjugate base of lactic acid. Lactic acid is a naturally-occurring compound that serves as fuel or energy in mammals by acting as an ubiquitous intermediate in the metabolic pathways . Lactic acid diffuses through the muscles and is transported to the liver by the bloodstream to participate in gluconeogenesis .

Most individuals naturally generate adequate amounts of vitamin D through ordinary dietary intake of vitamin D (in some foods like eggs, fish, and cheese) and natural photochemical conversion of the vitamin D3 precursor 7-dehydrocholesterol in the skin via exposure to sunlight .

Conversely, vitamin D deficiency can often occur from a combination of insufficient exposure to sunlight, inadequate dietary intake of vitamin D, genetic defects with endogenous vitamin D receptor, or even severe liver or kidney disease . Such deficiency is known for resulting in conditions like rickets or osteomalacia, all of which reflect inadequate mineralization of bone, enhanced compensatory skeletal demineralization, resultant decreased calcium ion blood concentrations, and increases in the production and secretion of parathyroid hormone . Increases in parathyroid hormone stimulate the mobilization of skeletal calcium and the renal excretion of phosphorus . This enhanced mobilization of skeletal calcium leads towards porotic bone conditions .

Ordinarily, while vitamin D3 is made naturally via photochemical processes in the skin, both itself and vitamin D2 can be found in various food and pharmaceutical sources as dietary supplements. The principal biological function of vitamin D is the maintenance of normal levels of serum calcium and phosphorus in the bloodstream by enhancing the efficacy of the small intestine to absorb these minerals from the diet . At the liver, vitamin D3 or D2 is hydroxylated to 25-hydroxyvitamin D and then finally to the primary active metabolite 1,25-dihydroxyvitamin D in the kidney via further hydroxylation . This final metabolite binds to endogenous vitamin d receptors, which results in a variety of regulatory roles - including maintaining calcium balance, the regulation of parathyroid hormone, the promotion of the renal reabsorption of calcium, increased intestinal absorption of calcium and phosphorus, and increased calcium and phosphorus mobilization of calcium and phosphorus from bone to plasma to maintain balanced levels of each in bone and the plasma .

In particular, calcitriol interacts with vitamin D receptors in the small intestine to enhance the efficiency of intestinal calcium and phosphorous absorption from about 10-15% to 30-40% and 60% increased to 80%, respectively . Furthermore, calcitriol binds with vitamin D receptors in osteoblasts to stimulate a receptor activator of nuclear factor kB ligand (or RANKL) which subsequently interacts with receptor activator of nuclear factor kB (NFkB) on immature preosteoclasts, causing them to become mature bone-resorbing osteoclasts . Such mature osteoclasts ultimately function in removing calcium and phosphorus from bone to maintain blood calcium and phosphorus levels . Moreover, calcitriol also stimulates calcium reabsorption from the glomerular filtrate in the kidneys .

Additionally, it is believed that when calcitriol binds with nuclear vitamin D receptors, that this bound complex itself binds to retinoic acid X receptor (RXR) to generate a heterodimeric complex that consequently binds to specific nucleotide sequences in the DNA called vitamin D response elements . When bound, various transcription factors attach to this complex, resulting in either up or down-regulation of the associated gene's activity. It is thought that there may be as much as 200 to 2000 genes that possess vitamin D response elements or that are influenced indirectly to control a multitude of genes across the genome . It is in this way that cholecalciferol is believed to function in regulating gene transcription associated with cancer risk, autoimmune disorders, and cardiovascular disease linked to vitamin D deficiency . In fact, there has been some research to suggest calcitriol may also be able to prevent malignancies by inducing cellular maturation and inducing apoptosis and inhibiting angiogenesis, exhibit anti-inflammatory effects by inhibiting foam cell formation and promoting angiogenesis in endothelial colony-forming cells in vitro, inhibit immune reactions by enhancing the transcription of endogenous antibiotics like cathelicidin and regulate the activity and differentiation of CD4+ T cells, amongst a variety of other proposed actions .

Vitamin B12 serves as a cofactor for methionine synthase and L-methylmalonyl-CoA mutase enzymes. Methionine synthase is essential for the synthesis of purines and pyrimidines that form DNA. L-methylmalonyl-CoA mutase converts L-methylmalonyl-CoA to succinyl-CoA in the degradation of propionate , an important reaction required for both fat and protein metabolism. It is a lack of vitamin B12 cofactor in the above reaction and the resulting accumulation of methylmalonyl CoA that is believed to be responsible for the neurological manifestations of B12 deficiency . Succinyl-CoA is also necessary for the synthesis of hemoglobin .

In tissues, vitamin B12 is required for the synthesis of methionine from homocysteine. Methionine is required for the formation of S-adenosylmethionine, a methyl donor for nearly 100 substrates, comprised of DNA, RNA, hormones, proteins, as well as lipids . Without vitamin B12, tetrahydrofolate cannot be regenerated from 5-methyltetrahydrofolate, and this can lead to functional folate deficiency , . This reaction is dependent on methylcobalamin (vitamin B12) as a co-factor and is also dependent on folate, in which the methyl group of methyltetrahydrofolate is transferred to homocysteine to form methionine and tetrahydrofolate. Vitamin B12 incorporates into circulating folic acid into growing red blood cells; retaining the folate in these cells . A deficiency of vitamin B12 and the interruption of this reaction leads to the development of megaloblastic anemia.

Dosage

Pifcal Plus dosage

Intravenous: Antidote in severe hypermagnesaemia, Severe hyperkalaemia:

  • Adult: 10 ml of 10% calcium gluconate solution over 2 minutes, repeated every 10 minutes if needed.
  • Child: Neonate and 1 mth-18 yr: 0.5 ml/kg of 10% calcium gluconate solution as a single dose. Max: 20 ml of 10% calcium gluconate solution.

Intravenous: Hypocalcaemic tetany, Severe acute hypocalcaemia:

  • Adult: 2.25 mmol by slow IV inj over 10 minutes, followed by 58-77 ml of 10% calcium gluconate solution in 0.5-1 L of 5% dextrose solution as continuous IV infusion.
  • Child: Neonate and 1 mth-18 yr: 0.5 ml/kg of 10% calcium gluconate solution as a single dose. Max: 20 ml of 10% calcium gluconate solution.

19-50 year: 1,000 mg elemental Calcium Lactate per day.

>50 year: 1,200 mg elemental Calcium Lactate per day.

Oral solution: Colecalciferol (Vitamin D3) is recommended 5-10 mcg or 1-2ml (200-400 IU)/day or as directed by the physician.

Chewable tablet: Cholecalciferol (Vitamin D3) is recommended 100 IU (1 tablet) daily, or as directed by physician. Take the medicine with food or within 1 hour after a meal. Place the tablet in mouth swallow after chewing.

Injection:

  • Treatment of Cholecalciferol deficiency: 40,000 lU/week for 7 weeks, followed by maintenance therapy (1400-2000 lU/day). Follow-up 25 (OH) D measurements should be made approximately 3 to 4 months after initiating maintenance therapy to confirm that the target level has been achieved.
  • Prevention of Vitamin D deficiency: 20,000 lU/Month.
  • Treatment of Vitamin D deficiency:12-18 years: 20,000 IU, once every 2 weeks for 6 weeks. Prevention of Vitamin D deficiency, 12-18 years: 20,000 IU, once every 6 weeks.

Usual Adult Dose for Pernicious Anemia

Initial dose: 1000 mcg intramuscularly or deep subcutaneous once a day for 6 to 7 daysIf clinical improvement and reticulocyte response is seen from the above dosing:

  • 100 mcg every other day for 7 doses, then
  • 100 mcg every 3 to 4 days for 2 to 3 weeks, then
  • Maintenance dose: 100 to 1000 mcg monthly

Administer concomitant folic acid if needed. Chronic treatment should be done with an oral preparation in patients with normal intestinal absorption.

Usual Adult Dose for B12 Nutritional Deficiency: 25 to 2000 mcg orally daily

Usual Adult Dose for Schilling Test: 1000 mcg intramuscularly is the flushing dose

Usual Pediatric Dose for B12 Nutritional Deficiency: 0.5 to 3 mcg daily

Side Effects

GI irritation; soft-tissue calcification, skin sloughing or necrosis after IM/SC inj. Hypercalcaemia characterised by anorexia, nausea, vomiting, constipation, abdominal pain, muscle weakness, mental disturbances, polydipsia, polyuria, nephrocalcinosis, renal calculi; chalky taste, hot flushes and peripheral vasodilation.

Gl discomfort e.g. nausea, vomiting, constipation; bradycardia, arrhythmias. Dry mouth, increased thirst or increased urination. Mental confusion, milk-alkali syndrome.

Generally all nutritional supplements are considered to be safe and well tolerable. However, few side-effects can generally occur including hypercalcaemia syndrome or Calcium intoxication (depending on the severity and duration of hypercalcaemia), occasional acute symptoms include anorexia, headache, nausea, vomiting, abdominal pain or stomach ache and constipation with the administration of Colecaciferol.

Arthralgia (12%), Dizziness (12%), Headache (12%), Nasopharyngitis (12%), Anaphylaxis, Angioedema, Congestive heart failure, Peripheral vascular disease,Pulmonary edema, Diarrhea, Dyspepsia, Polycythemia vera, Sore throat, Nervousness, Rhinitis, Glossitis, Hypoesthesia

Toxicity

Infants : LDLo (Intramuscular ) : 10gm/kg ; Effects - Brain and coverings : meningeal changes Infants : TDLo ( Intramuscular ) : 143 mg/kg ; Effects - Dermatits Mouse: LD50 ( intravenous ) : 950mg/kg Mouse : LDLo (Oral ) : 10gm/kg

The LDLo of calcium lactate pentahydrate following intravenous administration in mouse is 140 mg/kg .

Chronic or acute administration of excessive doses of cholecalciferol may lead to hypervitaminosis D, manifested by hypercalcemia and its sequelae . Early symptoms of hypercalcemia may include weakness, fatigue, somnolence, headache, anorexia, dry mouth, metallic taste, nausea, vomiting, vertigo, tinnitus, ataxia, and hypotonia . Later and possibly more serious manifestation include nephrocalcinosis, renal dysfunction, osteoporosis in adults, impaired growth in children, anemia, metastatic calcification, pancreatitis, generalized vascular calcification, and seizures .

Safety of doses in excess of 400 IU (10mcg) of vitamin D3 daily during pregnancy has not been established . Maternal hypercalcemia, possibly caused by excessive vitamin D intake during pregnancy, has been associated with hypercalcemia in neonates, which may lead to supravalvular aortic stenosis syndrome, the features of which may include retinopathy, mental or growth retardation, strabismus, and other effects . Hypercalcemia during pregnancy may also lead to suppression of parathyroid hormone release in the neonate, resulting in hypocalcemia, tetany, and seizures .

Vitamin D is deficient in maternal milk; therefore, breastfed infants may require supplementation. Use of excessive amounts of Vitamin D in nursing mothers may result in hypercalcemia in infants. Doses of Vitamin D3 in excess of 10 µg daily should not be administered daily to nursing women.

LD50 Oral (mouse): > 5,000 mg/kg .

General toxicity

Vitamin B12 is generally non-toxic, even at higher doses. Mild, transient diarrhea, polycythemia vera, peripheral vascular thrombosis, itching, transitory exanthema, a feeling of swelling of entire body, pulmonary edema and congestive heart failure in early treatment stages, anaphylactic shock and death have been observed after vitamin B12 administration .

Carcinogenesis and mutagenesis

Long term studies in animals examining the carcinogenic potential of any of the vitamin B12 formulations have not completed to date. There is no evidence from long-term use in patients with pernicious anemia that vitamin B12 has carcinogenic potential. Pernicious anemia is known to be associated with an increased incidence of stomach carcinoma, however, this malignancy has been attributed to the underlying cause of pernicious anemia and has not been found to be related to treatment with vitamin B12 .

Use in pregnancy

No adverse effects have been reported with ingestion of normal daily requirements during pregnancy .

A note on the use of the nasal spray in pregnancy

Although vitamin B12 is an essential vitamin and requirements are increased during pregnancy, it is currently unknown whether the nasal spray form can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. The nasal spray form should be given to a pregnant woman only if clearly needed, as it is considered a pregnancy category C drug in this form. Sufficient well-controlled studies have not been done to this date in pregnant women .

Use in lactation

Vitamin B12 has been found distributed into the milk of nursing women in concentrations similar to the maternal blood vitamin B12 concentrations. No adverse effects have been reported to date with intake of normal required doses during lactation .

Precaution

Impaired renal function; cardiac disease; hypercalcaemia-associated diseases, e.g. sarcoidosis; other malignancies. Pregnancy.

Sarcoidosis; history of nephrolithiasis. Avoid IV admin of calcium in patients on cardiac glycosides. Increased risk of hypercalcaemia and hypercalciuria in hypoparathyroid patients receiving high doses of vitamin D. Caution when used in patients with history of kidney stones. Patients should be advised to administer vitamin D concurrently to optimise calcium absorption. Pregnancy.

People with the following conditions should exercise caution when considering taking vitamin D supplements: High blood Calcium or Phosphorus level, Heart problems, Kidney disease.

Vitamin D must be taken with adequate amounts of both Calcium and Magnesium supplementation. When Calcium level is low (due to insufficient vitamin D and calcium intake), the body activates the parathyroid gland, which produces PTH (parathyroid hormone). This hormone kick starts vitamin D hormone production and assists removal of Calcium from the bones to be used in more important functions such as neutralizing body acidity.

Intensive treatment of B12-deficient megaloblastic anemia may cause hypokalemia and sudden death. Use with caution in patients with Leber optic nerve atrophy. Thrombocytosis may occur with treatment of severe vitamin B12 megaloblastic anemia

Interaction

Co-administration of high calcium doses with thiazide diuretics may result in milk-alkali syndrome and hypercalcaemia. May potentiate digoxin toxicity. Decreases effects of calcium-channel blockers. Enhanced absorption with calcitriol (a vitamin D metabolite).

May reduce the efficacy of calcium-channel blockers. Concurrent admin of IV calcium salt with cardiac glycosides may lead to serious adverse events. Increased risk of hypercalcaemia when used with thiazide diuretics. May reduce absorption of tetracycline, alendronate, atenolol, iron, quinolone antibiotics, sodium fluoride and zinc.

Cholecalciferol is known to interact with Carbamazepine, Dactinomycin, Diuretics, Fosphenytoin, Miconazole, Phenobarbital, Phenytoin, Primidone

Absorption reduced by antibiotics, aminosalicylic acid, anticonvulsants, biguanides, cholestyramine, cimetidine, colchicine, K salts, methyldopa.

Volume of Distribution

Not available

The majority of calcium absorbed (99%) is stored in the skeleton and teeth for structural integrity .

Studies have determined that the mean central volume of distribution of administered cholecalciferol supplementation in a group of 49 kidney transplant patients was approximately 237 L .

Cobalamin is distributed to tissues and stored mainly in the liver and bone marrow .

Elimination Route

Approximately one-fifth to one-third of orally administered calcium is absorbed in the small intestine, depending on presence of vitamin D metabolites, pH in lumen, and on dietary factors, such as calcium binding to fiber or phytates. Calcium absorption is increased when a calcium deficiency is present or when a patient is on a low-calcium diet. In patients with achlorhydria or hypochlorhydria, calcium absorption, especially with the carbonate salt, may be reduced.

In order to be absorbed, calcium must be in its freely soluble form (Ca2+) or bound to a soluble organic molecule. Calcium absorption mainly occurs at the duodenum and proximal jejunum due to more acidic pH and the abundance of the calcium binding proteins . The mean calcium absorption is about 25% of calcium intake (range is 10 – 40%) in the small intestine, and is mediated by both passive diffusion and active transport .

Cholecalciferol is readily absorbed from the small intestine if fat absorption is normal . Moreover, bile is necessary for absorption as well .

In particular, recent studies have determined aspects about the absorption of vitamin D, like the fact that a) the 25-hydroxyvitamin D metabolite of cholecalciferol is absorbed to a greater extent than the nonhydroxy form of cholecalciferol, b) the quantity of fat with which cholecalciferol is ingested does not appear to largely affect its bioavailability, and c) age does not apparently effect vitamin D cholecalciferol .

Vitamin B12 is quickly absorbed from intramuscular (IM) and subcutaneous (SC) sites of injection; with peak plasma concentrations achieved about 1 hour after IM injection .

Orally administered vitamin B12 binds to intrinsic factor (IF) during its transport through the stomach. The separation of Vitamin B12 and IF occurs in the terminal ileum when calcium is present, and vitamin B12 is then absorbed into the gastrointestinal mucosal cells. It is then transported by transcobalamin binding proteins . Passive diffusion through the intestinal wall can occur, however, high doses of vitamin B12 are required in this case (i.e. >1 mg). After the administration of oral doses less than 3 mcg, peak plasma concentrations are not reached for 8 to 12 hours, because the vitamin is temporarily retained in the wall of the lower ileum .

Half Life

No pharmacokinetic data available.

At this time, there have been resources that document the half-life of cholecalciferol as being about 50 days while other sources have noted that the half-life of calcitriol (1,25-dihydroxyvitamin D3) is approximately 15 hours while that of calcidiol (25-hydroxyvitamin D3) is about 15 days .

Moreover, it appears that the half-lives of any particular administration of vitamin d can vary due to variations in vitamin d binding protein concentrations and genotype in particular individuals .

Approximately 6 days (400 days in the liver) .

Clearance

No pharmacokinetic data available.

Studies have determined that the mean clearance value of administered cholecalciferol supplementation in a group of 49 kidney transplant patients was approximately 2.5 L/day .

During vitamin loading, the kidney accumulates large amounts of unbound vitamin B12. This drug is cleared partially by the kidney, however, multiligand receptor megalin promotes the reuptake and reabsorption of vitamin B12 into the body , .

Elimination Route

Renal (20%) - The amount excreted in the urine varies with degree of calcium absorption and whether there is excessive bone loss or failure of renal conservation. Fecal (80%) - Consists mainly of nonabsorbed calcium, with only a small amount of endogenous fecal calcium excreted.

Following oral administration to a human volunteer, 20 to 30% of a dose of lactic acid of up to 3000 mg was excreted via the urine during a period of 14 hours .

It has been observed that administered cholecalciferol and its metabolites are excreted primarily in the bile and feces .

This drug is partially excreted in the urine . According to a clinical study, approximately 3-8 mcg of vitamin B12 is secreted into the gastrointestinal tract daily via the bile. In patients with adequate levels of intrinsic factor, all except approximately 1 mcg is reabsorbed. When vitamin B12 is administered in higher doses that saturate the binding capacity of plasma proteins and the liver, the unbound vitamin B12 is eliminated rapidly in the urine. The body storage of vitamin B12 is dose-dependent .

Pregnancy & Breastfeeding use

Pregnancy Category C. Either studies in animals have revealed adverse effects on the fetus (teratogenic or embryocidal or other) and there are no controlled studies in women or studies in women and animals are not available. Drugs should be given only if the potential benefit justifies the potential risk to the fetus.

Pregnancy Category-C. Animal reproduction studies have shown an adverse effect on the fetus and there are no adequate and well-controlled studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks

There is no evidence to suggest that vitamin D is teratogenic in humans even at very high doses. Colecalciferol should be used during pregnancy only if the benefits outweigh the potential risk to the fetus.

It should be assumed that exogenous Colecalciferol passes into the breast milk. In view of the potential for hypercalcaemia in the mother and for adverse reactions from Colecalciferol in nursing infants, mothers may breastfeed while taking Colecalciferol, provided that the serum Calcium levels of the mother and infant are monitored.

Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).

Lactation: Drug distributed in milk.

Contraindication

Patients with calcium renal calculi or history of renal calculi. Conditions associated with hypercalcaemia and hypercalciuria.

Conditions associated with hypercalcaemia and hypercalciuria.

Colecalciferol is contraindicated in all diseases associated with hypercalcaemia. It is also contraindicated in patients with known hypersensitivity to Colecalciferol (or medicines of the same class) and any of the constituent excipients. Colecalciferol is contraindicated if there is evidence of vitamin D toxicity.

Leber's disease, tobacco amblyopia.

Acute Overdose

Symptoms: anorexia, headache, vomiting, constipation, dystrophy (weakness, loss of weight), sensory disturbances, possibly fever with thirst, polyuria, dehydration, apathy, arrested growth and urinary tract infections. Hypercalcaemia ensues, with metastatic calcification of the renal cortex, myocardium, lungs and pancreas.

Treatment: Immediate gastric lavage or induction of vomiting to prevent further absorption. Liquid paraffin should be administered to promote faecal excretion. Repeated serum calcium determinations are advisable. If elevated calcium levels persist in the serum, phosphates and corticosteroids may be administered and measures instituted to bring about adequate diuresis.

Innovators Monograph

You find simplified version here Pifcal Plus


*** Taking medicines without doctor's advice can cause long-term problems.
Share