Pilosol Rectal Ointment 4%+2%+0.025% Uses, Dosage, Side Effects and more

Each gram rectal ointment contains- Calcium Dobesilate BP 40 mg Lidocaine Hydrochloride USP 20 mg Dexamethasone Acetate BP 0.25 mg.
Trade Name Pilosol Rectal Ointment 4%+2%+0.025%
Generic Calcium Dobesilate + Lidocaine + Dexamethasone
Weight 4%+2%+0.025%
Type Rectal Ointment
Therapeutic Class Drugs used in Ano-rectal region
Manufacturer Ziska Pharmaceuticals Ltd.
Available Country Bangladesh
Last Updated: January 7, 2025 at 1:49 am

Uses

This rectal ointment is indicated in- Internal and external hemorrhoids, Anal pruritus Anal eczema Anitis Perianitis Acute hemorrhoidal thrombosis Anal fissure Pre and postoperative treatment in cases of hemorrhoidectomy A long-lasting treatment is not indicated.

Pilosol Rectal Ointment 4%+2%+0.025% is also used to associated treatment for these conditions: Acne Rosacea, Acute Gouty Arthritis, Acute Otitis Externa, Acute Otitis Media, Adrenal cortical hypofunctions, Adrenocortical Hyperfunction, Alopecia Areata (AA), Ankylosing Spondylitis (AS), Anterior Segment Inflammation, Aspiration Pneumonitis, Asthma, Atopic Dermatitis (AD), Berylliosis, Bullous dermatitis herpetiformis, Bursitis, Chorioretinitis, Choroiditis, Congenital Adrenal Hyperplasia (CAH), Congenital Hypoplastic Anemia, Conjunctivitis, Conjunctivitis allergic, Corneal Inflammation, Cushing's Syndrome, Dermatitis, Dermatitis exfoliative generalised, Dermatitis, Contact, Diabetic Macular Edema (DME), Discoid Lupus Erythematosus (DLE), Drug hypersensitivity reaction, Edema of the cerebrum, Epicondylitis, Episcleritis, Erythroblastopenia, Eye Infections, Eye allergy, Eye swelling, Glaucoma, Hypercalcemia, Idiopathic Thrombocytopenic Purpura, Infection, Inflammation, Inflammation of the External Auditory Canal, Intraocular Inflammation, Iridocyclitis, Iritis, Keloid Scars, Leukemia, Acute, Lichen Planus (LP), Lichen simplex chronicus, Loeffler's syndrome, Macular Edema, Malignant Lymphomas, Middle ear inflammation, Mucosal Inflammation of the eye, Multiple Myeloma (MM), Muscle Inflammation caused by Cataract Surgery of the eye, Mycosis Fungoides (MF), Necrobiosis lipoidica diabeticorum, Noninfectious Posterior Uveitis, Ocular Infections, Irritations and Inflammations, Ocular Inflammation, Ocular Inflammation and Pain, Ocular Irritation, Ophthalmia, Sympathetic, Optic Neuritis, Otitis Externa, Pemphigus, Perennial Allergic Rhinitis (PAR), Phlyctenular keratoconjunctivitis, Post-traumatic Osteoarthritis, Postoperative Infections of the eyes caused by susceptible bacteria, Regional Enteritis, Rheumatoid Arthritis, Rheumatoid Arthritis, Juvenile, Sarcoidosis, Scleritis, Seasonal Allergic Conjunctivitis, Seasonal Allergic Rhinitis, Secondary thrombocytopenia, Serum Sickness, Severe Seborrheic Dermatitis, Stevens-Johnson Syndrome, Synovitis, Systemic Lupus Erythematosus (SLE), Trichinosis, Tuberculosis (TB), Tuberculosis Meningitis, Ulcerative Colitis, Uveitis, Vernal Keratoconjunctivitis, Acquired immune hemolytic anemia, Acute nonspecific tenosynovitis, Acute rheumatic carditis, Corticosteroid-responsive dermatoses, Ear infection-not otherwise specified caused by susceptible bacteria, Granuloma annulare lesions, Non-suppurative Thyroiditis, Ocular bacterial infections, Severe Psoriasis, Steroid-responsive inflammation of the eye, Varicella-zoster virus acute retinal necrosis, Watery itchy eyesAcute Otitis Media, Anal Fissures, Anorectal discomfort, Arrhythmia, Back Pain Lower Back, Bacterial Vaginosis (BV), Burns, Cervical Syndrome, Earache, Hemorrhoids, Infection, Inflammatory Reaction caused by ear infection-not otherwise specified, Insect Bites, Joint Pain, Mixed Vaginal Infections, Multiple Myeloma (MM), Myringitis, Neuritis, Osteolysis caused by Bone Tumors, Osteoporosis, Otitis Externa, Pain caused by ear infection-not otherwise specified, Pain, Inflammatory, Post-Herpetic Neuralgia (PHN), Postherpetic Neuralgia, Primary Hyperparathyroidism, Rheumatic Diseases, Rheumatic Joint Disease, Sciatica, Skin Irritation, Soft Tissue Inflammation, Sore Throat, Sunburn, Susceptible infections, Trichomonas Vaginitis, Ulcers, Leg, Urethral Strictures, Vulvovaginal Candidiasis, Abrasions, Anal discomfort, Arrhythmia of ventricular origin, Cutaneous lesions, Gum pain, Minor burns, Superficial Wounds, Susceptible Bacterial Infections, Ulceration of the mouth, Viral infections of the external ear canal, Post Myocardial Infarction Treatment, Regional Anesthesia, Local anesthesia therapy

How Pilosol Rectal Ointment 4%+2%+0.025% works

The short term effects of corticosteroids are decreased vasodilation and permeability of capillaries, as well as decreased leukocyte migration to sites of inflammation. Corticosteroids binding to the glucocorticoid receptor mediates changes in gene expression that lead to multiple downstream effects over hours to days.

Glucocorticoids inhibit neutrophil apoptosis and demargination; they inhibit phospholipase A2, which decreases the formation of arachidonic acid derivatives; they inhibit NF-Kappa B and other inflammatory transcription factors; they promote anti-inflammatory genes like interleukin-10.

Lower doses of corticosteroids provide an anti-inflammatory effect, while higher doses are immunosuppressive. High doses of glucocorticoids for an extended period bind to the mineralocorticoid receptor, raising sodium levels and decreasing potassium levels.

Lidocaine is a local anesthetic of the amide type . It is used to provide local anesthesia by nerve blockade at various sites in the body . It does so by stabilizing the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses, thereby effecting local anesthetic action . In particular, the lidocaine agent acts on sodium ion channels located on the internal surface of nerve cell membranes . At these channels, neutral uncharged lidocaine molecules diffuse through neural sheaths into the axoplasm where they are subsequently ionized by joining with hydrogen ions . The resultant lidocaine cations are then capable of reversibly binding the sodium channels from the inside, keeping them locked in an open state that prevents nerve depolarization . As a result, with sufficient blockage, the membrane of the postsynaptic neuron will ultimately not depolarize and will thus fail to transmit an action potential . This facilitates an anesthetic effect by not merely preventing pain signals from propagating to the brain but by aborting their generation in the first place .

In addition to blocking conduction in nerve axons in the peripheral nervous system, lidocaine has important effects on the central nervous system and cardiovascular system . After absorption, lidocaine may cause stimulation of the CNS followed by depression and in the cardiovascular system, it acts primarily on the myocardium where it may produce decreases in electrical excitability, conduction rate, and force of contraction .

Dosage

Pilosol Rectal Ointment 4%+2%+0.025% dosage

2-3 times daily. Apply in the morning and bedtime and if possible after defecation. If the ointment is preferred, use the applicator by screwing it to the tube. Insert the applicator as deep as possible in the anus then press the tube gently while withdrawing it. In this case, the tube is sufficient for 8 applications. In case of external hemorrhoids or anal pruritus, apply a thin layer of the ointment several times a day. The duration of the treatment is generally of some days. The doctor must be informed if, after 1 to 2 weeks of treatment, the symptomatology has not improved or has worsened.Calcium Dobesilate, Lidocaine HCI & Dexamethasone Acetate Ointment should be applied 2-3 times daily preferably in the morning and at bedtime, if possible apply after defecation. In the case of internal hemorrhoids apply the ointment by the applicator. In cases of external hemorrhoids and anal pruritus, apply a thin layer of the ointment several times a day. The duration of the treatment is generally of some days. The physician must be informed if, after 1 to 2 weeks of treatment the symptomatology has not improved or has worsened.Method of use of this ointment:For internal use- Before use remove the cap from the tube. Pierce the tube membrane by inverting the cap. Attach the applicator (supplied) to the tube. Squeeze the tube to fill the applicator and lubricate the tip with ointment for smooth insertion. Insert the applicator gently and to full extend into the anus and squeeze once again from the end of the tube to force the required amount of ointment into the anal canal. Remove the applicator after application and discard it. Try not to have defecation for a couple of hours after an internal application. For external use- Squeeze the tube of ointment and apply a small amount to the finger. Apply the ointment around the outside of the anus with a finger. Wash the hands thoroughly with warm water and soap after each application. Reattach the cap to tube.

Side Effects

Very rare cases have been reported: Modifications of the intestinal transit, temporary burning sensation and local pain. Hypersensitivity reactions together with skin reactions and/or fever can occur. These reactions can be of allergic origin and in this case, the treatment must be discontinued.

Toxicity

The oral LD50 in female mice was 6.5g/kg and 794mg/kg via the intravenous route.

Overdoses are not expected with otic formulations. Chronic high doses of glucocorticoids can lead to the development of cataract, glaucoma, hypertension, water retention, hyperlipidemia, peptic ulcer, pancreatitis, myopathy, osteoporosis, mood changes, psychosis, dermal atrophy, allergy, acne, hypertrichosis, immune suppression, decreased resistance to infection, moon face, hyperglycemia, hypocalcemia, hypophosphatemia, metabolic acidosis, growth suppression, and secondary adrenal insufficiency. Overdose may be treated by adjusting the dose or stopping the corticosteroid as well as initiating symptomatic and supportive treatment.

Symptoms of overdose and/or acute systemic toxicity involves central nervous system toxicity that presents with symptoms of increasing severity . Patients may present initially with circumoral paraesthesia, numbness of the tongue, light-headedness, hyperacusis, and tinnitus . Visual disturbance and muscular tremors or muscle twitching are more serious and precede the onset of generalized convulsions . These signs must not be mistaken for neurotic behavior . Unconsciousness and grand mal convulsions may follow, which may last from a few seconds to several minutes . Hypoxia and hypercapnia occur rapidly following convulsions due to increased muscular activity, together with the interference with normal respiration and loss of the airway . In severe cases, apnoea may occur. Acidosis increases the toxic effects of local anesthetics . Effects on the cardiovascular system may be seen in severe cases . Hypotension, bradycardia, arrhythmia and cardiac arrest may occur as a result of high systemic concentrations, with potentially fatal outcome .

Pregnancy Category B has been established for the use of lidocaine in pregnancy, although there are no formal, adequate, and well-controlled studies in pregnant women . General consideration should be given to this fact before administering lidocaine to women of childbearing potential, especially during early pregnancy when maximum organogenesis takes place . Ultimately, although animal studies have revealed no evidence of harm to the fetus, lidocaine should not be administered during early pregnancy unless the benefits are considered to outweigh the risks . Lidocaine readily crosses the placental barrier after epidural or intravenous administration to the mother . The ratio of umbilical to maternal venous concentration is 0.5 to 0.6 . The fetus appears to be capable of metabolizing lidocaine at term . The elimination half-life in the newborn of the drug received in utero is about three hours, compared with 100 minutes in the adult . Elevated lidocaine levels may persist in the newborn for at least 48 hours after delivery . Fetal bradycardia or tachycardia, neonatal bradycardia, hypotonia or respiratory depression may occur .

Local anesthetics rapidly cross the placenta and when used for epidural, paracervical, pudendal or caudal block anesthesia, can cause varying degrees of maternal, fetal and neonatal toxicity . The potential for toxicity depends upon the procedure performed, the type and amount of drug used, and the technique of drug administration . Adverse reactions in the parturient, fetus and neonate involve alterations of the central nervous system, peripheral vascular tone, and cardiac function .

Maternal hypotension has resulted from regional anesthesia . Local anesthetics produce vasodilation by blocking sympathetic nerves . Elevating the patient’s legs and positioning her on her left side will help prevent decreases in blood pressure . The fetal heart rate also should be monitored continuously, and electronic fetal monitoring is highly advisable .

Epidural, spinal, paracervical, or pudendal anesthesia may alter the forces of parturition through changes in uterine contractility or maternal expulsive efforts . In one study, paracervical block anesthesia was associated with a decrease in the mean duration of first stage labor and facilitation of cervical dilation . However, spinal and epidural anesthesia have also been reported to prolong the second stage of labor by removing the parturient’s reflex urge to bear down or by interfering with motor function . The use of obstetrical anesthesia may increase the need for forceps assistance .

The use of some local anesthetic drug products during labor and delivery may be followed by diminished muscle strength and tone for the first day or two of life . The long-term significance of these observations is unknown . Fetal bradycardia may occur in 20 to 30 percent of patients receiving paracervical nerve block anesthesia with the amide-type local anesthetics and may be associated with fetal acidosis . Fetal heart rate should always be monitored during paracervical anesthesia . The physician should weigh the possible advantages against risks when considering a paracervical block in prematurity, toxemia of pregnancy, and fetal distress . Careful adherence to the recommended dosage is of the utmost importance in obstetrical paracervical block . Failure to achieve adequate analgesia with recommended doses should arouse suspicion of intravascular or fetal intracranial injection . Cases compatible with unintended fetal intracranial injection of local anesthetic solution have been reported following intended paracervical or pudendal block or both. Babies so affected present with unexplained neonatal depression at birth, which correlates with high local anesthetic serum levels, and often manifest seizures within six hours . Prompt use of supportive measures combined with forced urinary excretion of the local anesthetic has been used successfully to manage this complication .

It is not known whether this drug is excreted in human milk . Because many drugs are excreted in human milk, caution should be exercised when lidocaine is administered to a nursing woman .

Dosages in children should be reduced, commensurate with age, body weight and physical condition .

The oral LD 50 of lidocaine HCl in non-fasted female rats is 459 (346-773) mg/kg (as the salt) and 214 (159-324) mg/kg (as the salt) in fasted female rats .

Precaution

In case of renal insufficiency, this rectal ointment should not be used during longer periods. Avoid long-lasting treatments.

Interaction

Drug interaction can be occurred with following drugs:Diuretics, cardiac glycosides, antidiabetics, NSAIDs, anticoagulants, antacids etc. Besides, if patients undergo long-term therapy of glucororticoids with concomitant salicylates, any reduction in glucocorticoid dosage should be made with caution, since salicylate intoxication has been reported in such cases.

May increase serum levels with cimetidine and propranolol. Increased risk of cardiac depression with β-blockers and other antiarrhythmics. Additive cardiac effects with IV phenytoin. Hypokalaemia caused by acetazolamide, loop diuretics and thiazides may antagonise effect of lidocaine. Dose requirements may be increased with long-term use of phenytoin and other enzyme-inducers.

Volume of Distribution

A 1.5mg oral dose of dexamethasone has a volume of distribution of 51.0L, while a 3mg intramuscular dose has a volume of distribution of 96.0L.

The volume of distribution determined for lidocaine is 0.7 to 1.5 L/kg .

In particular, lidocaine is distributed throughout the total body water . Its rate of disappearance from the blood can be described by a two or possibly even three-compartment model . There is a rapid disappearance (alpha phase) which is believed to be related to uptake by rapidly equilibrating tissues (tissues with high vascular perfusion, for example) . The slower phase is related to distribution to slowly equilibrating tissues (beta phase) and to its metabolism and excretion (gamma phase) .

Lidocaine's distribution is ultimately throughout all body tissues . In general, the more highly perfused organs will show higher concentrations of the agent . The highest percentage of this drug will be found in skeletal muscle, mainly due to the mass of muscle rather than an affinity .

Elimination Route

Absorption via the intramuscular route is slower than via the intravenous route. A 3mg intramuscular dose reaches a Cmax of 34.6±6.0ng/mL with a Tmax of 2.0±1.2h and an AUC of 113±38ng*h/mL. A 1.5mg oral dose reaches a Cmax of 13.9±6.8ng/mL with a Tmax of 2.0±0.5h and an AUC of 331±50ng*h/mL. Oral dexamethasone is approximately 70-78% bioavailable in healthy subjects.

In general, lidocaine is readily absorbed across mucous membranes and damaged skin but poorly through intact skin . The agent is quickly absorbed from the upper airway, tracheobronchial tree, and alveoli into the bloodstream . And although lidocaine is also well absorbed across the gastrointestinal tract the oral bioavailability is only about 35% as a result of a high degree of first-pass metabolism . After injection into tissues, lidocaine is also rapidly absorbed and the absorption rate is affected by both vascularity and the presence of tissue and fat capable of binding lidocaine in the particular tissues .

The concentration of lidocaine in the blood is subsequently affected by a variety of aspects, including its rate of absorption from the site of injection, the rate of tissue distribution, and the rate of metabolism and excretion . Subsequently, the systemic absorption of lidocaine is determined by the site of injection, the dosage given, and its pharmacological profile . The maximum blood concentration occurs following intercostal nerve blockade followed in order of decreasing concentration, the lumbar epidural space, brachial plexus site, and subcutaneous tissue . The total dose injected regardless of the site is the primary determinant of the absorption rate and blood levels achieved . There is a linear relationship between the amount of lidocaine injected and the resultant peak anesthetic blood levels .

Nevertheless, it has been observed that lidocaine hydrochloride is completely absorbed following parenteral administration, its rate of absorption depending also on lipid solubility and the presence or absence of a vasoconstrictor agent . Except for intravascular administration, the highest blood levels are obtained following intercostal nerve block and the lowest after subcutaneous administration .

Additionally, lidocaine crosses the blood-brain and placental barriers, presumably by passive diffusion .

Half Life

The mean terminal half life of a 20mg oral tablet is 4 hours. A 1.5mg oral dose of dexamethasone has a half life of 6.6±4.3h, while a 3mg intramuscular dose has a half life of 4.2±1.2h.

The elimination half-life of lidocaine hydrochloride following an intravenous bolus injection is typically 1.5 to 2.0 hours . Because of the rapid rate at which lidocaine hydrochloride is metabolized, any condition that affects liver function may alter lidocaine HCl kinetics . The half-life may be prolonged two-fold or more in patients with liver dysfunction .

Clearance

A 20mg oral tablet has a clearance of 15.7L/h. A 1.5mg oral dose of dexamethasone has a clearance of 15.6±4.9L/h while a 3.0mg intramuscular dose has a clearance of 9.9±1.4L/h.

The mean systemic clearance observed for intravenously administered lidocaine in a study of 15 adults was approximately 0.64 +/- 0.18 L/min .

Elimination Route

Corticosteroids are generally eliminated predominantly in the urine. However, dexamethasone is 15

The excretion of unchanged lidocaine and its metabolites occurs predominantly via the kidney with less than 5% in the unchanged form appearing in the urine . The renal clearance is inversely related to its protein binding affinity and the pH of the urine . This suggests by the latter that excretion of lidocaine occurs by non-ionic diffusion .

Pregnancy & Breastfeeding use

Pregnancy category C. Studies in pregnant women or animals are not available and in humans, it is not known whether Calcium Dobesilate crosses the placental barrier. On the other hand, after topical administration, Lidocaine Hydrochloride and Dexamethasone Acetate are resorbed in variable quantities and can have systemic effects. Moreover, both substances cross the placental barrier. In these conditions, this rectal ointment should be administered during pregnancy only if the potential benefit justifies the potential risk to the fetus. After oral administration, Calcium Dobesilate is excreted in the maternal milk in low amounts but it is not known whether this is the case with local use. After topical administration, Lidocaine Hydrochloride and Dexamethasone Acetate are excreted in the maternal milk. As a precaution, it should be decided between discontinuating the treatment or the breast-feeding.

Contraindication

Hypersensitivity towards the components of this preparation.

Special Warning

Hepatic Impairment Parenteral: Dosage reduction may be needed.

Acute Overdose

No overdosage information found yet.

Storage Condition

The ointment must be stored protected from heat. Store it below 30°C.

Innovators Monograph


*** Taking medicines without doctor's advice can cause long-term problems.
Share