Pivasta F

Pivasta F Uses, Dosage, Side Effects, Food Interaction and all others data.

Fenofibrate is a fibric acid derivative, a prodrug comprising fenofibric acid linked to an isopropyl ester. Fenofibrate is rapidly hydrolyzed after oral ingestion to its pharmacologically active form, fenofibric acid. The effects of fenofibric acid seen in clinical practice have been explained in vivo in transgenic mice and in vitro in human hepatocyte cultures by the activation of peroxisome proliferator activated receptor α (PPARα)

It lowers lipid levels by activating peroxisome proliferator-activated receptor alpha (PPARα). PPARα activates lipoprotein lipase and reduces apoprotein CIII (an inhibitor of lipoprotein lipase activity), which increases lipolysis and elimination of triglyceride-rich particles from plasma. The resulting fall in triglycerides produces an alteration in the size and composition of LDL from small, dense particles (which are thought to be atherogenic due to their susceptibility to oxidation), to large buoyant particles. These larger particles have a greater affinity for cholesterol receptors and are catabolized rapidly

PPARα also increases apoproteins AI and AII, reduces VLDL- and LDL-containing apoprotein B, and increases HDL-containing apoprotein AI and AII. Fenofibrate also reduces serum uric acid levels in hyperuricemic and normal individuals by increasing the urinary excretion of uric acid.

Fenofibrate is a fibrate that activates peroxisome proliferator activated receptor alpha (PPARα) to alter lipid metabolism and treat primary hypercholesterolemia, mixed dyslipidemia, and severe hypertriglyceridemia. Fenofibrate requires once daily dosing and has a half life of 19-27 hours so its duration of action is long. Fenofibrate capsules are given at a dose of 50-150mg daily so the therapeutic index is wide. Patients should be counselled about the risk of rhabdomyolysis, myopathy, and cholelithiasis when taking fibrates.

Pitavastatin, also known as the brand name product Livalo, is a lipid-lowering drug belonging to the statin class of medications. By inhibiting the endogenous production of cholesterol within the liver, statins lower abnormal cholesterol and lipid levels and ultimately reduce the risk of cardiovascular disease. More specifically, statin medications competitively inhibit the enzyme hydroxymethylglutaryl-coenzyme A (HMG-CoA) Reductase, which catalyzes the conversion of HMG-CoA to mevalonic acid. This is the third step in a sequence of metabolic reactions involved in the production of several compounds involved in lipid metabolism and transport including cholesterol, low-density lipoprotein (LDL) (sometimes referred to as "bad cholesterol"), and very low-density lipoprotein (VLDL). Prescribing of statin medications is considered standard practice following any cardiovascular events and for people with a moderate to high risk of development of CVD, such as those with Type 2 Diabetes. The clear evidence of the benefit of statin use coupled with very minimal side effects or long term effects has resulted in this class becoming one of the most widely prescribed medications in North America.

Pitavastatin and other drugs from the statin class of medications including atorvastatin, pravastatin, rosuvastatin, fluvastatin, and lovastatin are considered first-line options for the treatment of dyslipidemia. Increasing use of the statin class of drugs is largely due to the fact that cardiovascular disease (CVD), which includes heart attack, atherosclerosis, angina, peripheral artery disease, and stroke, has become a leading cause of death in high-income countries and a major cause of morbidity around the world. Elevated cholesterol levels, and in particular, elevated low-density lipoprotein (LDL) levels, are an important risk factor for the development of CVD. Use of statins to target and reduce LDL levels has been shown in a number of landmark studies to significantly reduce the risk of development of CVD and all-cause mortality. Statins are considered a cost-effective treatment option for CVD due to their evidence of reducing all-cause mortality including fatal and non-fatal CVD as well as the need for surgical revascularization or angioplasty following a heart attack. Evidence has shown that even for low-risk individuals with rosuvastatin is considered the most potent; doses of 10 to 40mg rosuvastatin per day were found in clinical studies to result in a 45.8% to 54.6% decrease in LDL cholesterol levels. Study data has confirmed that pitavastatin's potency in lowering LDL-C is comparable to that of other statins but also has increased efficacy in increasing HDL-C (also known as "good cholesterol"). Despite these differences in potency, several trials have demonstrated only minimal differences in terms of clinical outcomes between statins.

Pitavastatin is an oral antilipemic agent which inhibits HMG-CoA reductase. It is used to lower total cholesterol, low density lipoprotein-cholesterol (LDL-C), apolipoprotein B (apoB), non-high density lipoprotein-cholesterol (non-HDL-C), and trigleride (TG) plasma concentrations while increasing HDL-C concentrations. High LDL-C, low HDL-C and high TG concentrations in the plasma are associated with increased risk of atherosclerosis and cardiovascular disease. The total cholesterol to HDL-C ratio is a strong predictor of coronary artery disease and high ratios are associated with higher risk of disease. Increased levels of HDL-C are associated with lower cardiovascular risk. By decreasing LDL-C and TG and increasing HDL-C, rosuvastatin reduces the risk of cardiovascular morbidity and mortality.

Trade Name Pivasta F
Generic Fenofibrate + Pitavastatin
Weight 135mg
Type Capsule
Therapeutic Class
Manufacturer Zydus Cadila Healthcare Ltd
Available Country India
Last Updated: September 19, 2023 at 7:00 am
Pivasta F
Pivasta F

Uses

Fenofibrate is used for an adjunct to diet and other non pharmacological treatment (e.g. exercise, weight reduction) for the following:

  • Treatment of severe hypertriglyceridemia with or without low HDL cholesterol.
  • Mixed hyperlipidemia when a statin is contraused or not tolerated.
  • Mixed hyperlipidemia in patients at high cardiovascular risk in addition to a statin when triglycerides and HDL cholesterol are not adequately controlled

Pitavastatin is an HMG-CoA reductase inhibitor used to lower lipid levels and reduce the risk of cardiovascular disease including myocardial infarction and stroke.

Pitavastatin is indicated for the treatment of adult patients with primary hyperlipidemia or mixed dyslipidemia to reduce elevated total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (Apo B), triglycerides (TG), and to increase high-density lipoprotein cholesterol (HDL-C). It is also indicated for the treatment of pediatric patients aged 8 years and older with heterozygous familial hypercholesterolemia (HeFH) to reduce elevated TC, LDL-C, and Apo B.

Prescribing of statin medications is considered standard practice following any cardiovascular events and for people with a moderate to high risk of development of CVD. Statin-indicated conditions include diabetes mellitus, clinical atherosclerosis (including myocardial infarction, acute coronary syndromes, stable angina, documented coronary artery disease, stroke, trans ischemic attack (TIA), documented carotid disease, peripheral artery disease, and claudication), abdominal aortic aneurysm, chronic kidney disease, and severely elevated LDL-C levels.

Pivasta F is also used to associated treatment for these conditions: Mixed Dyslipidemias, Primary Hypercholesterolemia, Severe Hypertriglyceridemia, Severe Fredrickson Type IV Hypertriglyceridemia, Severe Fredrickson Type V HypertriglyceridemiaHeterozygous Familial Hypercholesterolemia (HeFH), Mixed Dyslipidemias, Primary Hyperlipidemia

How Pivasta F works

Fenofibrate activates peroxisome proliferator activated receptor alpha (PPARα), increasing lipolysis, activating lipoprotein lipase, and reducing apoprotein C-III. PPARα is a nuclear receptor and its activation alters lipid, glucose, and amino acid homeostasis. Activation of PPARα activates transcription of gene transcription and translation that generates peroxisomes filled with hydrogen peroxide, reactive oxygen species, and hydroxyl radicals that also participate in lipolysis. This mechanism of increased lipid metabolism is also associated with increased oxidative stress on the liver. In rare cases this stress can lead to cirrhosis and chronic active hepatitis.

Pitavastatin is a statin medication and a competitive inhibitor of the enzyme HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase, which catalyzes the conversion of HMG-CoA to mevalonate, an early rate-limiting step in cholesterol biosynthesis. Pitavastatin acts primarily in the liver, where decreased hepatic cholesterol concentrations stimulate the upregulation of hepatic low density lipoprotein (LDL) receptors which increase hepatic uptake of LDL, thereby reducing circulating LDL-C levels.

In vitro and in vivo animal studies also demonstrate that statins exert vasculoprotective effects independent of their lipid-lowering properties, also known as the pleiotropic effects of statins. This includes improvement in endothelial function, enhanced stability of atherosclerotic plaques, reduced oxidative stress and inflammation, and inhibition of the thrombogenic response.

Statins have also been found to bind allosterically to β2 integrin function-associated antigen-1 (LFA-1), which plays an important role in leukocyte trafficking and in T cell activation.

Dosage

Pivasta F dosage

The dose is one 200 mg capsule per day. Dosage should be individualized according to patient response, and should be increased sequentially if necessary following repeat serum triglyceride estimations at 4 to 8 week intervals. Patients should be placed on an appropriate triglyceride-lowering diet before receiving fenofibrate, and should continue this diet during treatment with fenofibrate. Fenofibrate should be given with meals, thereby optimizing the bioavailability of the medication.

Side Effects

Digestive: hepatitis, cholelithiasis, cholecystitis, hepatomegaly

Musculoskeletal: myalgia, myasthenia, rhabdomyolysis

Skin and appendages: photosensitivity, eczema

Cardiovascular: peripheral edema, angina, palpitations, tachycardia, and migraine

Toxicity

The oral LD50 in rats is >2g/kg and in mice is 1600mg/kg. The oral TDLO in rats is 9mg/kg.

Treat patients with supportive care including monitoring of vital signs and observing clinical status. Recent overdose may be treated with inducing vomiting or gastric lavage. Due to fenofibrate's extensive protein binding, hemodialysis is not expected to be useful.

Precaution

Increased risk of cholelithiasis, pancreatitis, skeletal muscle effects. Patient at risk of rhabdomyolysis. Renal impairment. Pregnancy.

Interaction

Oral Anticoagulants: Caution should be exercised when anticoagulants are given in conjunction with fenofibrate. The dosage of the anticoagulants should be reduced to maintain the prothrombin time at the desired level to prevent bleeding complications.

Resins: Since bile acid sequestrants may bind other drugs given concurrently, patients should take fenofibrate at least 1 hour before or 4-6 hours after a bile acid binding resin to avoid impending its absorption.

Cyclosporine: Because cyclosporine can produce nephrotoxicity with decreases in creatinine clearance and rises in serum creatinine, and because renal excretion is the primary elimination route of fibrate drugs including fenofibrate, there is a risk that an interaction will lead to deterioration.

Volume of Distribution

The volume of distribution of fenofibrate is 0.89L/kg, and can be as high as 60L.

148 L

Elimination Route

A single 300mg oral dose of fenofibrate reaches a Cmax of 6-9.5mg/L with a Tmax of 4-6h in healthy, fasting volunteers.

Pitavastatin peak plasma concentrations are achieved about 1 hour after oral administration. Both Cmax and AUC0-inf increased in an approximately dose-proportional manner for single pitavastatin doses from 1 mg to 24 mg once daily. The absolute bioavailability of pitavastatin oral solution is 51%. The Cmax and AUC of pitavastatin did not differ following evening or morning drug administration. In healthy volunteers receiving 4 mg pitavastatin, the percent change from baseline for LDL-C following evening dosing was slightly greater than that following morning dosing. Pitavastatin was absorbed in the small intestine but very little in the colon.

Compared to other statins, pitavastatin has a relatively high bioavailability, which has been suggested to occur due to enterohepatic reabsorption in the intestine following intestinal absorption.

Genetic differences in the OATP1B1 (organic-anion-transporting polypeptide 1B1) hepatic transporter encoded by the SCLCO1B1 gene (Solute Carrier Organic Anion Transporter family member 1B1) have been shown to impact pitavastatin pharmacokinetics. Evidence from pharmacogenetic studies of the c.521T>C single nucleotide polymorphism (SNP) in the gene encoding OATP1B1 (SLCO1B1) demonstrated that pitavastatin AUC was increased 3.08-fold for individuals homozygous for 521CC compared to homozygous 521TT individuals. Other statin drugs impacted by this polymorphism include simvastatin, pitavastatin, atorvastatin, and rosuvastatin. Individuals with the 521CC genotype may be at increased risk of dose-related adverse effects including myopathy and rhabdomyolysis due to increased exposure to the drug.

Half Life

Fenofibric acid, the active metabolite of fenofibrate, has a half life of 23 hours. Fenofibrate has a half life of 19-27 hours in healthy subjects and up to 143 hours in patients with renal failure.

The mean plasma elimination half-life is approximately 12 hours.

Clearance

The oral clearance of fenofibrate is 1.1L/h in young adults and 1.2L/h in the elderly.

Following a single dose, the apparent mean oral clearance of pitavastatin is 43.4 L/h.

Elimination Route

5-25% of a dose of fenofibrate is eliminated in the feces, while 60-88% is eliminated in the urine. 70-75% of the dose recovered in the urine is in the form of fenofibryl glucuronide and 16% as fenofibric acid.

A mean of 15% of radioactivity of orally administered, single 32 mg 14C-labeled pitavastatin dose was excreted in urine, whereas a mean of 79% of the dose was excreted in feces within 7 days.

Pregnancy & Breastfeeding use

Pregnancy Category C. Fenofibrate should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Nursing mothers: Fenofibrate should not be used in nursing mothers. Because of the potential for tumorigenicity seen in animal studies, a decision should be made whether to discontinue nursing or to discontinue the drug.

Contraindication

Fenofibrate is contraindicated in patients with-

  • Hypersensitivity to fenofibrate or any component of this medication.
  • Known photoallergy or phototoxic reaction during treatment with fibrates or ketoprofen.
  • Severe liver dysfunction, gallbladder disease, biliary cirrhosis, severe renal disorders.
  • Chronic or acute pancreatitis with the exception of acute pancreatitis due to severe hypertriglyceridemia.
  • Pregnancy and lactation.

Special Warning

Geriatrics: This indicates that a similar dosage regimen can be used in the elderly, without increasing accumulation of the drug or metabolites.

Pediatrics: No data are available. Fenofibrate is not indicated for use in the pediatric population.

Gender: No pharmacokinetic difference between male and female has been observed for fenofibrate.

Renal insufficiency: The dosage of fenofibrate should be minimized in patients who have severe renal impairment, while no modification of dosage is required in patients having moderate renal impairment.

Hepatic insufficiency: No pharmacokinetic study has been conducted in patients having hepatic insufficiency.

Storage Condition

Store at cool & dry place. Protect from light and moisture.

Innovators Monograph

You find simplified version here Pivasta F


*** Taking medicines without doctor's advice can cause long-term problems.
Share