Plabolyte-m

Plabolyte-m Uses, Dosage, Side Effects, Food Interaction and all others data.

Calcium chloride is an ionic compound of calcium and chlorine. It is highly soluble in water and it is deliquescent. It is a salt that is solid at room temperature, and it behaves as a typical ionic halide. It has several common applications such as brine for refrigeration plants, ice and dust control on roads, and in cement. It can be produced directly from limestone, but large amounts are also produced as a by-product of the Solvay process. Because of its hygroscopic nature, it must be kept in tightly-sealed containers.

Calcium is the fifth most abundant element in the body and the major fraction is in the bony structure. Calcium plays important physiological roles, many of which are poorly understood. It is essential for the functional integrity of the nervous and muscular systems. It is necessary for normal cardiac function and is one of the factors that operates in the mechanisms involved in the coagulation of blood.

Potassium chloride is a major cation of the intracellular fluid. It plays an active role in the conduction of nerve impulses in the heart, brain and skeletal muscle; contraction of cardiac skeletal and smooth muscles; maintenance of normal renal function, acid-base balance, carbohydrate metabolism and gastric secretion.

The potassium ion is in the principle intracellular cation of most body tissues. Potassium ions participate in a number of essential physiological processes including the maintenance of intracellular tonicity, the transmission of nerve impulses, the contraction of cardiac, skeletal and smooth muscle, and the maintenance of normal renal function. The intracellular concentration of potassium is approximately 150 to 160 mEq per liter. The normal adult plasma concentration is 3.5 to 5 mEq per liter. An active ion transport system maintains this gradient across the plasma membrane. Potassium is a normal dietary constituent and under steady-state conditions the amount of potassium absorbed from the gastrointestinal tract is equal to the amount excreted in the urine. The usual dietary intake of potassium is 50 to 100 mEq per day. Potassium depletion will occur whenever the rate of potassium loss through renal excretion and/or loss from the gastrointestinal tract exceeds the rate of potassium intake. Such depletion usually develops as a consequence of therapy with diuretics, primarily or secondary hyperaldosteronism, diabetic ketoacidosis, or inadequate replacement of potassium in patients on prolonged parenteral nutrition. Depletion can develop rapidly with severe diarrhea, especially if associated with vomiting. Potassium depletion due to these causes is usually accompanied by concomitant loss of chloride and is manifested by hypokalemia and metabolic alkalosis. Potassium depletion may produce weakness, fatigue, disturbances of cardiac rhythm (primarily ectopic beats), prominent U-waves in the electrocardiogram, and, in advanced cases, flaccid paralysis and/or impaired ability to concentrate urine. If potassium depletion associated with metabolic alkalosis cannot be managed by correcting the fundamental cause of the deficiency, e.g., where the patient requires long-term diuretic therapy, supplemental potassium in the form of high potassium food or potassium chloride may be able to restore normal potassium levels. In rare circumstances (e.g., patients with renal tubular acidosis) potassium depletion may be associated with metabolic acidosis and hyperchloremia. In such patients, potassium replacement should be accomplished with potassium salts other than the chloride, such as potassium bicarbonate, potassium citrate, potassium acetate, or potassium gluconate.

Sodium Acetate is chemically designated CH3COONa, a hygroscopic powder very soluble in water. Sodium acetate could be used as additives in food, industry, concrete manufacture, heating pads and in buffer solutions. Medically, sodium acetate is important component as an electrolyte replenisher when given intravenously. It is mainly indicated to correct sodium levels in hyponatremic patients. It can be used also in metabolic acidosis and for urine alkalinization.

Sodium is the principal cation of extracellular fluid. It comprises more than 90% of total cations at its normal plasma concentration of approximately 140 mEq/liter. The sodium ion exerts a primary role in controlling total body water and its distribution. Acetate ions acts as hydrogen ion acceptor which is alternative to bicarbonate.

Trade Name Plabolyte-m
Generic Calcium Chloride + Glucose + Potassium Chloride + Sodium Acetate
Weight 0.2g/l, 5%w/v, 1.5g/l, 3.13g/l
Type Infusion
Therapeutic Class
Manufacturer Otsuka Pakistan Ltd,
Available Country Pakistan
Last Updated: September 19, 2023 at 7:00 am
Plabolyte-m
Plabolyte-m

Uses

Calcium chloride is an ionic compound used for the treatment of hypocalcemia and hyperkalemia, and as an antidote to magnesium intoxication due to overdosage of magnesium sulfate.

For the treatment of hypocalcemia in those conditions requiring a prompt increase in blood plasma calcium levels, for the treatment of magnesium intoxication due to overdosage of magnesium sulfate, and used to combat the deleterious effects of hyperkalemia as measured by electrocardiographic (ECG), pending correction of the increased potassium level in the extracellular fluid.

Potassium chloride is used for drug induced hypokalemia, liver cirrhosis, nausea, vomiting, cholera, diarrhoea, muscular weakness, paralysis, cardiac and congestive heart failure, diabetic ketoacidosis, ulcerative colitis, weakness, anorexia, drowsiness, Cushing's syndrome, pyloric stenosis, low blood pressure etc.

Sodium acetate is a compound used for electrolyte replenishment and total parenteral nutrition (TPN) therapy.

Injection, USP 40 mEq is indicated as a source of sodium, for addition to large volume intravenous fluids to prevent or correct hyponatremia in patients with restricted or no oral intake. It is also useful as an additive for preparing specific intravenous fluid formulas when the needs of the patient cannot be met by standard electrolyte or nutrient solutions. Sodium acetate and other bicarbonate precursors are alkalinising agents, and can be used to correct metabolic acidosis, or for alkalinisation of the urine.

Plabolyte-m is also used to associated treatment for these conditions: Acute Renal Failure (ARF), Chronic Renal Failure (CRF), Dehydration, Dehydration Hypertonic, Dry Mouth, Electrolyte depletion, End-stage Chronic Kidney Failure, Fluid Loss, Hyperkalemia, Hypocalcemia, Hypocalcemic tetany, Hypovolaemia, Isotonic Dehydration, Shock, Hypovolemic, Beta blocker overdose, Calcium channel blocker overdose, Continuous Renal Replacement Therapy, Electrolyte replacement, Haemodiafiltration, Hemodialysis Treatment, Hemofiltration, Irrigation therapy, Parenteral Nutrition, Peritoneal dialysis therapy, Plasma Volume Replacement, Urine alkalinization therapy, Distension of the joints, Extraocular irrigation, Fluid and electrolyte maintenance therapy, Induction of cardiac arrest, Irrigation of the jointsDehydration, Dry Mouth, Hypokalemia, Hypotonic Dehydration, Hypovolaemia, Isotonic Dehydration, Markedly Reduced Food Intake, Metabolic Acidosis, Hypodermoclysis, Mild Metabolic acidosis, Mild, moderate Metabolic Acidosis, Ocular edema, Acid-Base Balance, Bowel preparation therapy, Electrolyte replacement, Fluid replacement therapy, Hemodialysis Treatment, Hemofiltration, Parenteral Nutrition, Parenteral rehydration therapy, Plasma Volume Replacement, Urine alkalinization therapy, Fluid and electrolyte maintenance therapyHyponatremia, Hypovolaemia, Mild, moderate Metabolic Acidosis, Irrigation therapy, Nutritional supplementation, Oral rehydration therapy, Parenteral Nutrition, Parenteral rehydration therapy, Total parenteral nutrition therapy, Priming solution for infusion

How Plabolyte-m works

Calcium chloride in water dissociates to provide calcium (Ca2+) and chloride (Cl-) ions. They are normal constituents of the body fluids and are dependent on various physiological mechanisms for maintenance of balance between intake and output. For hyperkalemia, the influx of calcium helps restore the normal gradient between threshold potential and resting membrane potential.

Supplemental potassium in the form of high potassium food or potassium chloride may be able to restore normal potassium levels.

It works as a source of sodium ions especially in cases of hyponatremic patients. Sodium has a primary role in regulating extracellular fluid volume. It controls water distribution, fluid and electrolyte balance and the osmotic pressure of body fluids. Sodium is also involved in nerve conduction, muscle contraction, acid-base balance and cell nutrient uptake.

Dosage

Plabolyte-m dosage

Oral:Dosage must be adjusted to the individual needs of each patient.

  • Adults: In severe deficiencies 3-6 tablets or 4-8 teaspoonful or 25-50 mmol per day orally in divided doses for some days with fruit juice, sweet or plain water.
  • Children: ½-1 teaspoonful twice daily or 1-3 mmol/kg body weight a day in several divided doses.

Patient should take Potassium chloride with meals.

Intravenous:

Severe acute hypokalaemia:

  • Adult: If serum potassium level >2.5 mEq/L, give at a rate not exceeding 10 mEq/hr in a concentration of up to 40 mEq/L. Max dose: 200 mEq/24 hr. If serum potassium level <2 mEq/L, may infuse at a rate of up to 40 mEq/hr. Continuous cardiac monitoring is essential. Max dose: 400 mEq/24 hr.

75 mg KCl equivalent to 1 mmol K+

Side Effects

GI ulceration (sometimes with haemorrhage and perforation or with late formation of strictures) following the use of enteric-coated K chloride preparation; hyperkalaemia. Oral: Nausea, vomiting, diarrhoea and abdominal cramps. IV: Pain or phloebitis; cardiac toxicity.

Toxicity

Too rapid injection may produce lowering of blood pressure and cardiac syncope. Persistent hypercalcemia from overdosage of calcium is unlikely because of rapid excretion.

The administration of oral potassium salts to persons with normal excretory mechanisms for potassium rarely causes serious hyperkalemia. However, if excretory mechanisms are impaired, of if potassium is administered too rapidly intravenously, potentially fatal hyperkalemia can result. It is important to recognize that hyperkalemia is usually asymptomatic and may be manifested only by an increased serum potassium concentration (6.5-8.0 mEq/L) and characteristic electrocardiographic changes (peaking of T-waves, loss of P-wave, depression of S-T segment, and prolongation of the QT interval). Late manifestations include muscle paralysis and cardiovascular collapse from cardiac arrest (9-12 mEq/L).

LD50: 25956 mg/kg (Rat.)

Precaution

Renal or adrenocortical insufficiency; cardiac disease; acute dehydration; extensive tissue destruction. Pregnancy. Ensure adequate urine output; monitor plasma-potassium and other electrolyte concentrations. Discontinue treatment if severe nausea, vomiting or abdominal distress develops. Accumulation of potassium may occur in renal impairment.

Interaction

Potassium-sparing diuretics, ACE inhibitors, ciclosporin and potassium-containing drugs. Antimuscarinics delay gastric emptying time consequently increasing risk of GI adverse effects esp of solid oral dosage forms.

Elimination Route

Potassium is a normal dietary constituent and under steady-state conditions the amount of potassium absorbed from the gastrointestinal tract is equal to the amount excreted in the urine.

It is readily available in the circulation after IV administration.

Elimination Route

Approximately 80% of body calcium is excreted in the feces as insoluble salts; urinary excretion accounts for the remaining 20%.

Potassium is a normal dietary constituent and, under steady-state conditions, the amount of potassium absorbed from the gastrointestinal tract is equal to the amount excreted in the urine. Potassium depletion will occur whenever the rate of potassium loss through renal excretion and/or loss from the gastrointestinal tract exceeds the rate of potassium intake.

Both the sodium and bicarbonate ions are excreted mainly in the urine. Some sodium is excreted in the feces, and small amounts may also be excreted in saliva, sweat, bile and pancreatic secretions.

Pregnancy & Breastfeeding use

Category C: Either studies in animals have revealed adverse effects on the foetus (teratogenic or embryocidal or other) and there are no controlled studies in women or studies in women and animals are not available. Drugs should be given only if the potential benefit justifies the potential risk to the foetus.

Contraindication

Hyperchloraemia, severe renal or adrenal insufficiency.

Storage Condition

Intravenous: Store at 15-30° C.

Oral: Store below 30° C.

Innovators Monograph

You find simplified version here Plabolyte-m


*** Taking medicines without doctor's advice can cause long-term problems.
Share