Prenagen Esensis

Prenagen Esensis Uses, Dosage, Side Effects, Food Interaction and all others data.

Magnesium is classified as an alkaline earth metal and has 2 hydration shells. The element can be found in abundance in the hydrosphere and in mineral salts such as dolomite and magnesium carbonate.

Common dietary sources of magnesium include nuts (cashews, peanuts, almonds), beans, bananas, apples, carrots, broccoli, and leafy greens. Magnesium is an important enzyme cofactor and is essential to several metabolic processes. Further, the mineral helps regulate blood pressure and is necessary for RNA, DNA and protein synthesis among several other functions.

Despite the importance of magnesium and its availability via several food sources, an estimated 56 to 68% of adults who live in developed, western countries do not meet the recommended daily intake (RDI) of magnesium. Several factors and common behaviours reduce the availability of magnesium in the diet such as food processing and cooking vegetables (which are normally a rich source of magnesium).

Niacin is a preparation of Nicotinic acid. It is proven effective at lowering VLDL, LDL, total cholesterol and triglyceride levels while raising HDL levels. So Niacin has been prescriped for the treatment of cardiovascular disease particularly the hyperlipidemias.

Niacin is a B vitamin used to treat vitamin deficiencies as well as hyperlipidemia, dyslipidemia, hypertriglyceridemia, and to reduce the risk of myocardial infarctions. Niacin acts to decrease levels of very low density lipoproteins and low density lipoproteins, while increasing levels of high density lipoproteins. Niacin has a wide therapeutic window with usual oral doses between 500mg and 2000mg. Patients with diabetes, renal failure, uncontrolled hypothyroidism, and elderly patients taking niacin with simvastatin or lovastatin are at increased risk of myopathy and rhabdomyolysis.

Vitamin A plays an essential role in the function of retina and is essential for growh and differentiation of epithelial tissue.

Vitamin A is effective for the treatment of Vitamin A deficiency. Vitamin A refers to a group of fat-soluble substances that are structurally related to and possess the biological activity of the parent substance of the group called all-trans retinol or retinol. Vitamin A plays vital roles in vision, epithelial differentiation, growth, reproduction, pattern formation during embryogenesis, bone development, hematopoiesis and brain development. It is also important for the maintenance of the proper functioning of the immune system.

A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with anemia, short stature, hypogonadism, impaired wound healing, and geophagia. It is identified by the symbol Zn .

A newer study suggests implies that an imbalance of zinc is associated with the neuronal damage associated with traumatic brain injury, stroke, and seizures .

Understanding the mechanisms that control brain zinc homeostasis is, therefore, imperative to the development of preventive and treatment regimens for these and other neurological disorders .

Trade Name Prenagen Esensis
Generic Asam folat + kalsium + fosfor + magnesium + protein + zat besi + omega + omega + vitamin A + C + D + E + B + B + Niacin + B + B + zinc + iodium serta selenium.
Weight 3, 6, 3, 1, 2, 6, 12
Type Milk powder
Therapeutic Class
Manufacturer Sanghiang Perkasa
Available Country Indonesia
Last Updated: September 19, 2023 at 7:00 am
Prenagen Esensis
Prenagen Esensis

Uses

Magnesium is a medication used for many purposes including constipation, indigestion, magnesium deficiency, and pre-eclampsia.

Healthy levels of magnesium can be achieved through a well balanced diet, but if food sources are insufficient, magnesium supplements can be used to prevent and treat magnesium deficiencies.

In medicine, various magnesium salts may be used in laxative and antacid products. For example, magnesium citrate is available over-the-counter and may be used to manage occasional constipation. Magnesium sulfate may be used on its own or with total parenteral nutrition to treat hypomagnesemia. Magnesium sulfate is also indicated to prevent seizures in pregnant women with pre-eclampsia, and to manage seizures associated with eclampsia.

Therapy with lipid-altering agents should be only one component of multiple risk factor intervention in individuals at significantly increased risk for atheroscleroticvascular disease due to hyperlipidemia. Niacin therapy is used for an adjunct to diet when the response to a diet restricted in saturated fat and cholesterol and other nonpharmacologic measures alone has been inadequate.

  • Niacin is used to reduce elevated TC, LDL-C, Apo B and TG levels, and to increase HDL-C in patients with primary hyperlipidemia and mixed dyslipidemia.
  • In patients with a history of myocardial infarction and hyperlipidemia, niacin is used to reduce the risk of recurrent nonfatal myocardial infarction.
  • In patients with a history of coronary artery disease (CAD) and hyperlipidemia, niacin, in combination with a bile acid binding resin, is used to slow progression or promote regression of atherosclerotic disease.
  • Niacin in combination with a bile acid binding resin is used to reduce elevated TC and LDL-C levels in adult patients with primary hyperlipidemia.
  • Niacin is also used as adjunctive therapy for treatment of adult patients with severe hypertriglyceridemia who present a risk of pancreatitis and who do not respond adequately to a determined dietary effort to control them.

Effective for:

  • Vitamin A deficiency. Taking vitamin A by mouth is effective for preventing and treating symptoms of vitamin A deficiency. Vitamin A deficiency can occur in people with protein deficiency, diabetes, over-active thyroid, fever, liver disease, cystic fibrosis, or an inherited disorder called abetalipoproteinemia.

Possibly Effective for:

  • Breast cancer. Premenopausal women with a family history of breast cancer who consume high levels of vitamin A in their diet seem to have reduced risk of developing breast cancer. It is not known if taking vitamin A supplements has the same benefit.
  • Cataracts. Research suggests that high intake of vitamin A in the diet is linked to a lower risk of developing cataracts.
  • Diarrhea related to HIV. Taking vitamin A along with conventional medicines seems to decrease the risk of death from diarrhea in HIV-positive children with vitamin A deficiency.
  • Malaria. Taking vitamin A by mouth seems to decrease malaria symptoms in children less than 3 years-old living in areas where malaria is common.
  • Measles. Taking vitamin A by mouth seems to reduce the risk of measles complications or death in children with measles and vitamin A deficiency.
  • Precancerous lesions in the mouth (oral leukoplakia). Research suggests that taking vitamin A can help treat precancerous lesions in the mouth.
  • Recovery from laser eye surgery (photoreactive keratectomy). Taking vitamin A by mouth along with vitamin E seems to improve healing after laser eye surgery.
  • Complications after pregnancy. Taking vitamin A seems to reduce the risk of diarrhea and fever after pregnancy in malnourished women.
  • Complications during pregnancy. Taking vitamin A by mouth seems to reduce the risk of death and night blindness during pregnancy in malnourished women.
  • Eye disease affecting the retina (retinitis pigmentosa). Research suggests that taking vitamin A can slow the progression of an eye disease that causes damage to the retina.

Zinc is an essential element commonly used for the treatment of patients with documented zinc deficiency.

Zinc can be used for the treatment and prevention of zinc deficiency/its consequences, including stunted growth and acute diarrhea in children, and slowed wound healing. It is also utilized for boosting the immune system, treating the common cold and recurrent ear infections, as well as preventing lower respiratory tract infections .

Prenagen Esensis is also used to associated treatment for these conditions: Calcium Deficiency, Magnesium Deficiency, Zinc DeficiencyAtherosclerosis, Mixed Dyslipidemias, Myocardial Infarction, Pellagra, Vitamin Deficiency, Primary Hyperlipidemia, Severe Hyperlipidemia, Dietary supplementationDeficiency, Vitamin A, Deficiency, Vitamin D, Degenerative Retinal Disorders, Disorder of the Epithelium, Disorder of the Mesoderm, Inner ear disorder, Vitamin Deficiency, Vitamin E Deficiency, Nutritional supplementationCandidiasis, Common Cold, Diaper Dermatitis, Diaper Rash, Eye redness, Iron Deficiency (ID), Ocular Irritation, Skin Irritation, Sunburn, Wilson's Disease, Zinc Deficiency, Dietary and Nutritional Therapies, Dietary supplementation

How Prenagen Esensis works

Magnesium is a cofactor for at least 300 enzymes and is important for several functions in the body with some key processes identified below. Enzymes that rely on magnesium to operate help produce energy through oxidative phosphorylation, glycolysis and ATP metabolism. They are also involved in nerve function, muscle contraction, blood glucose control, hormone receptor binding, protein synthesis, cardiac excitability, blood pressure control, gating of calcium channels and transmembrane ion flux.

The mitochondrial intracellular space is rich in magnesium, since it is required to produce the active form of ATP (adenosine triphosphate) from ADP (adenosine diphosphate) and inorganic phosphate, and behaves as a counter ion for the energy rich molecule. Additionally, magnesium is essential for ATP metabolism.

Niacin performs a number of functions in the body and so has many mechanisms, not all of which have been fully described. Niacin can decrease lipids and apolipoprotein B (apo B)-containing lipoproteins by modulating triglyceride synthesis in the liver, which degrades apo B, or by modulating lipolysis in adipose tissue.

Niacin inhibits hepatocyte diacylglycerol acyltransferase-2. This action prevents the final step of triglyceride synthesis in hepatocytes, limiting available triglycerides for very low density lipoproteins (VLDL). This activity also leads to intracellular degradation of apo B and decreased production of low density lipoproteins, the catabolic product of VLDL.

Niacin also inhibits a high density lipoprotein (HDL) catabolism receptor, which increases the levels and half life of HDL.

Vision:Vitamin A (all-trans retinol) is converted in the retina to the 11-cis-isomer of retinaldehyde or 11-cis-retinal. 11-cis-retinal functions in the retina in the transduction of light into the neural signals necessary for vision. 11-cis-retinal, while attached to opsin in rhodopsin is isomerized to all-trans-retinal by light. This is the event that triggers the nerve impulse to the brain which allows for the perception of light. All-trans-retinal is then released from opsin and reduced to all-trans-retinol. All-trans-retinol is isomerized to 11-cis-retinol in the dark, and then oxidized to 11-cis-retinal. 11-cis-retinal recombines with opsin to re-form rhodopsin. Night blindness or defective vision at low illumination results from a failure to re-synthesize 11-cis retinal rapidly.
Epithelial differentiation: The role of Vitamin A in epithelial differentiation, as well as in other physiological processes, involves the binding of Vitamin A to two families of nuclear retinoid receptors (retinoic acid receptors, RARs; and retinoid-X receptors, RXRs). These receptors function as ligand-activated transcription factors that modulate gene transcription. When there is not enough Vitamin A to bind these receptors, natural cell differentiation and growth are interrupted.

Zinc has three primary biological roles: catalytic, structural, and regulatory. The catalytic and structural role of zinc is well established, and there are various noteworthy reviews on these functions. For example, zinc is a structural constituent in numerous proteins, inclusive of growth factors, cytokines, receptors, enzymes, and transcription factors for different cellular signaling pathways. It is implicated in numerous cellular processes as a cofactor for approximately 3000 human proteins including enzymes, nuclear factors, and hormones .

Zinc promotes resistance to epithelial apoptosis through cell protection (cytoprotection) against reactive oxygen species and bacterial toxins, likely through the antioxidant activity of the cysteine-rich metallothioneins .

In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF pathway, decreases NF-kappaB activation, leading to decreased gene expression and generation of tumor necrosis factor-alpha (TNF-alpha), IL-1beta, and IL-8 .

There are several mechanisms of action of zinc on acute diarrhea. Various mechanisms are specific to the gastrointestinal system: zinc restores mucosal barrier integrity and enterocyte brush-border enzyme activity, it promotes the production of antibodies and circulating lymphocytes against intestinal pathogens, and has a direct effect on ion channels, acting as a potassium channel blocker of adenosine 3-5-cyclic monophosphate-mediated chlorine secretion. Cochrane researchers examined the evidence available up to 30 September 2016 .

Zinc deficiency in humans decreases the activity of serum thymulin (a hormone of the thymus), which is necessary for the maturation of T-helper cells. T-helper 1 (Th(1)) cytokines are decreased but T-helper 2 (Th(2)) cytokines are not affected by zinc deficiency in humans [A342417].

The change of Th(1) to Th(2) function leads to cell-mediated immune dysfunction. Because IL-2 production (Th(1) cytokine) is decreased, this causes decreased activity of natural-killer-cell (NK cell) and T cytolytic cells, normally involved in killing viruses, bacteria, and malignant cells [A3424].

In humans, zinc deficiency may lead to the generation of new CD4+ T cells, produced in the thymus. In cell culture studies (HUT-78, a Th(0) human malignant lymphoblastoid cell line), as a result of zinc deficiency, nuclear factor-kappaB (NF-kappaB) activation, phosphorylation of IkappaB, and binding of NF-kappaB to DNA are decreased and this results in decreased Th(1) cytokine production .

In another study, zinc supplementation in human subjects suppressed the gene expression and production of pro-inflammatory cytokines and decreased oxidative stress markers [A3424]. In HL-60 cells (a human pro-myelocytic leukemia cell line), zinc deficiency increased the levels of TNF-alpha, IL-1beta, and IL-8 cytokines and mRNA. In such cells, zinc was found to induce A20, a zinc finger protein that inhibited NF-kappaB activation by the tumor necrosis factor receptor-associated factor pathway. This process decreased gene expression of pro-inflammatory cytokines and oxidative stress markers .

The exact mechanism of zinc in acne treatment is poorly understood. However, zinc is considered to act directly on microbial inflammatory equilibrium and facilitate antibiotic absorption when used in combination with other agents. Topical zinc alone as well as in combination with other agents may be efficacious because of its anti-inflammatory activity and ability to reduce P. acnes bacteria by the inhibition of P. acnes lipases and free fatty acid levels .

Dosage

Prenagen Esensis dosage

Niacin can be administered as a single dose at bedtime, after a snack or meal and doses should be individualized according to patient response. Therapy with Niacin must be initiated at 500 mg in order to reduce the incidence and severity of side effects which may occur during early therapy.

Maintenance Dose: The daily dosage of Niacin should not be increased by more than 500 mg in any 4-week period. The recommended maintenance dose is 1000 mg (two 500 mg tablets or one 1000 mg tablet) to 2000 mg (two 1000 mg tablets or four 500 mg tablets) once daily at bedtime. Doses greater than 2000 mg daily are not recommended. Women may respond at lower Niacin doses than men.

Single-dose bioavailability studies have demonstrated that two of the 500 mg and one of the 1000 mg tablet strengths are interchangeable but three of the 500 mg and two of the 750 mg tablet strengths are not interchangeable.

Flushing of the skin may be reduced in frequency or severity by pretreatment with aspirin (up to the recommended dose of 325 mg taken 30 minutes prior to Niacin dose). Tolerance to this flushing develops rapidly over the course of several weeks. Flushing,pruritus, andgastrointestinaldistress are also greatly reduced by slowly increasing the dose of niacin and avoiding administration on an empty stomach. Concomitant alcoholic, hot drinks or spicy foods may increase the side effects of flushing and pruritus and should be avoided around the time of Niacin ingestion.

Equivalent doses of Niacin should not be substituted for sustained-release (modified-release, timed-release) niacin preparations or immediate-release (crystalline) niacin. Patients previously receiving other niacin products should be started with the recommended Niacin titration schedule, and the dose should subsequently be individualized based on patient response.

If Niacin therapy is discontinued for an extended period, reinstitution of therapy should include a titration phase.

Vitamin A deficiency For severe deficiency with corneal changes: 500,000 unit/day for 3 days, followed by 50,000 unit/day for 2 wk and then 10,000-20,000 unit/day for 2 mth as follow-up therapy.

For cases without corneal changes: 10,000-25,000 unit/day until clinical improvement occurs (usually 1 -2 wk).

Niacin tablets should be taken whole and should not be broken, crushed or chewed before swallowing.

Side Effects

Niacin is generally well tolerated; adverse reactions have been mild and transient.The most frequent advers effects were flushing, itching, pruritis, nausea and GI upset, jaundice ,hypotension, tachycardia, increased serum blood glucose and uric acid levels, myalgia.

Hypervitaminosis A characterised by fatigue, irritability, anorexia, weight loss, vomiting and other Gl disturbances, low-grade fever, hepatosplenomegaly, skin changes, alopoecia, dry hair, cracking and bleeding lips, SC swelling, nocturia, pains in bones and joints.

Toxicity

The recommended dietary allowance of magnesium ranges from 30 mg for infants to 420 mg for males between the age of 31 and 50. According to the institute of Medicine (IOM), the majority of adults can tolerate 350 mg of magnesium per day without experiencing adverse effects. Symptoms of magnesium toxicity include diarrhea and other gastrointestinal effects, thirst, muscle weakness, drowsiness, severe back and pelvic pain, hypotension, dizziness, confusion, difficulty breathing, lethargy, and deterioration of kidney function. Other more severe symptoms associated with magnesium overdose include loss of consciousness, respiratory arrest, cardiac arrhythmias and cardiac arrest.

Regular use of laxatives containing magnesium may lead to severe and even fatal hypermagnesemia.

Discontinuation of magnesium products including supplements, laxatives, and antacids is usually sufficient to manage mild cases of magnesium overdose; however, patients should also be screened for renal impairment.

In severe cases of magnesium overdose, patients may require supportive care and interventions including intravenous fluids and furosemide, IV calcium chloride or calcium gluconate, renal dialysis and artificial respiratory support.

Overdose of niacin may present with severe prolonged hypotension. Patients experiencing an overdose should be treated with supportive measures which may include intravenous fluids.

The oral LD50 in the mouse is 3720mg/kg, in the rabbit is 4550mg/kg, in the rat is 7000mg/kg, and the dermal LD50 in the rat is >2000mg/kg.

Acute toxicity to vitamin A can occur when adults or children ingest >100x or >20x the RDA, respectively, over a period of hours or a few days. The RDA for vitamin A differs depending on age and sex and can range from 300 - 900 μg retinol activity equivalents (RAE) per day. Symptoms of acute systemic toxicity generally include mucocutaneous involvement (e.g. xerosis, cheilitis, skin peeling) and may involve mental status changes. Children are typically more susceptible to acute vitamin A toxicity - daily intakes of as little as 1500 IU/kg have been observed to result in toxicity.

Chronic vitamin A toxicity can develop following the long-term ingestion of high vitamin A doses. While there is a wide variation in the lowest toxic vitamin A dose, the ingestion of >25 000 IU daily for 6 years or 100,000 IU daily for 6 months is considered to be toxic. Chronic vitamin A toxicity can affect many organ systems and can lead to the development of osteoporosis and CNS effects (e.g. headaches).

According to the Toxnet database of the U.S. National Library of Medicine, the oral LD50 for zinc is close to 3 g/kg body weight, more than 10-fold higher than cadmium and 50-fold higher than mercury .

The LD50 values of several zinc compounds (ranging from 186 to 623 mg zinc/kg/day) have been measured in rats and mice .

Precaution

Before instituting therapy with Niacin, an attempt should be made to control hyperlipidemia with appropriate diet, exercise, and weight reduction in obese patients and to treat other underlying medical problems. Patients with a past history of jaundice, hepatobiliary disease, or peptic ulcer should be observed closely during Niacin therapy. Frequent monitoring of liver function tests and blood glucose should be performed to ascertain that the drug is producing no adverse effects on these organ systems. Diabetic patients may experience a dose-related rise in glucose intolerance, the clinical significance of which is unclear. Diabetic or potentially diabetic patients should be observed closely. Adjustment of diet and/or hypoglycemic therapy may be necessary.

Caution should also be used when Niacin is used in patients with unstable angina or in the acute phase of MI, particularly when such patients are also receiving vasoactive drugs such as nitrates, calcium channel blockers or adrenergic blocking agents. Elevated uric acid levels have occurred with Niacin therapy, therefore use with caution in patients predisposed to gout. Niacin has been associated with small but statistically significant dose-related reductions in platelet count and increases in prothrombin time. Caution should be observed when Niacin is administered concomitantly with anticoagulants; prothrombin time and platelet counts should be monitored closely in such patients. Niacin has been associated with small but statistically significant, dose-related reductions in phosphorus levels (mean of -13% with 2000 mg). So phosphorus levels should be monitored periodically in patients at risk.

Cholestatic jaundice; fat-malabsorption conditions. Monitor patients closely for toxicity. Liver impairment and children.

Interaction

Niacin may potentiate the effects of ganglionic blocking agents and vasoactive drugs resulting in postural hypotension. Concomitant aspirin may decrease the metabolic clearance of nicotinic acid. The clinical relevance of this finding is unclear. About 98% of available Niacin was bound to colestipol, with 10 to 30% binding to cholestyramine. These results suggest that 4 to 6 hours, or as great an interval as possible, should elapse between the ingestion of bile acid-binding resins and the administration of Niacin.

Decreased absorption with neomycin. Increased risk of hypervitaminosis A with synthetic retinoids eg, acitretin, isotretinoin and tretinoin. Increased risk of toxicity when used with alcohol.

Volume of Distribution

According to a pharmacokinetic review, the volume of distribution of magnesium sulphate when used to manage patients with pre-eclampsia and eclampsia ranged from 13.65 to 49.00 L.

Data regarding the volume of distribution of niacin is not readily available.

A pharmacokinetic study was done in rats to determine the distribution and other metabolic indexes of zinc in two particle sizes. It was found that zinc particles were mainly distributed to organs including the liver, lung, and kidney within 72 hours without any significant difference being found according to particle size or rat gender .

Elimination Route

Approximately 24-76% of ingested magnesium is absorbed in the gastrointestinal tract, primarily via passive paracellular absorption in the small intestine.

In patients with chronic kidney disease, the Cmax is 0.06µg/mL for a 500mg oral dose, 2.42µg/mL for a 1000mg oral dose, and 4.22µg/mL for a 1500mg oral dose. The Tmax is 3.0 hours for a 1000mg or 1500mg oral dose. The AUC is 1.44µg*h/mL for a 500mg oral dose, 6.66µg*h/mL for a 1000mg oral dose, and 12.41µg*h/mL for a 1500mg oral dose. These values did not drastically differ in patients requiring dialysis.

Readily absorbed from the normal gastrointestinal tract

Zinc is absorbed in the small intestine by a carrier-mediated mechanism . Under regular physiologic conditions, transport processes of uptake do not saturate. The exact amount of zinc absorbed is difficult to determine because zinc is secreted into the gut. Zinc administered in aqueous solutions to fasting subjects is absorbed quite efficiently (at a rate of 60-70%), however, absorption from solid diets is less efficient and varies greatly, dependent on zinc content and diet composition .

Generally, 33% is considered to be the average zinc absorption in humans . More recent studies have determined different absorption rates for various populations based on their type of diet and phytate to zinc molar ratio. Zinc absorption is concentration dependent and increases linearly with dietary zinc up to a maximum rate [L20902].

Additionally zinc status may influence zinc absorption. Zinc-deprived humans absorb this element with increased efficiency, whereas humans on a high-zinc diet show a reduced efficiency of absorption .

Half Life

Magnesiums biologic half-life is reported to be approximately 1000 hours or 42 days.

The half life of niacin is 0.9h, nicotinuric acid is 1.3h, and nicotinamide is 4.3h.

1.9 hours

The half-life of zinc in humans is approximately 280 days .

Clearance

Data regarding the clearance of niacin is not readily available.

In one study of healthy patients, the clearance of zinc was found to be 0.63 ± 0.39 μg/min .

Elimination Route

The majority of magnesium is excreted renally.

69.5% of a dose of niacin is recovered in urine. 37.9% of the recovered dose was N-methyl-2-pyridone-5-carboxamide, 16.0% was N-methylnicotinamide, 11.6% was nicotinuric acid, and 3.2% was niacin.

The excretion of zinc through gastrointestinal tract accounts for approximately one-half of all zinc eliminated from the body .

Considerable amounts of zinc are secreted through both biliary and intestinal secretions, however most is reabsorbed. This is an important process in the regulation of zinc balance. Other routes of zinc excretion include both urine and surface losses (sloughed skin, hair, sweat) .

Zinc has been shown to induce intestinal metallothionein, which combines zinc and copper in the intestine and prevents their serosal surface transfer. Intestinal cells are sloughed with approximately a 6-day turnover, and the metallothionein-bound copper and zinc are lost in the stool and are thus not absorbed .

Measurements in humans of endogenous intestinal zinc have primarily been made as fecal excretion; this suggests that the amounts excreted are responsive to zinc intake, absorbed zinc and physiologic need .

In one study, elimination kinetics in rats showed that a small amount of ZnO nanoparticles was excreted via the urine, however, most of the nanoparticles were excreted via the feces .

Pregnancy & Breastfeeding use

Niacin cannot be used in pregnancy and lactation because of a lack of information.

Pregnancy Category A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).

Contraindication

Niacin is contraindicated in patients with a known hypersensitivity to Niacin or any component of this medication, significant or unexplained hepatic dysfunction, active peptic ulcer disease or arterial bleeding.

Hypervitaminosis A; pregnancy (dose exceeding RDA).

Acute Overdose

Supportive measures should be undertaken in the event of an overdosage. Symptoms may include nausea, dizziness, itching, vomiting, upset stomach, and flushing

Innovators Monograph

You find simplified version here Prenagen Esensis


*** Taking medicines without doctor's advice can cause long-term problems.
Share