Productiv Pcos Orange Flav Chew Uses, Dosage, Side Effects and more
Productiv Pcos Orange Flav Chew Uses, Dosage, Side Effects, Food Interaction and all others data.
Chromium is a transition element with the chemical symbol Cr and atomic number 24 that belongs to Group 6 of the periodic table. It is used in various chemical, industrial and manufacturing applications such as wood preservation and metallurgy. The uses of chromium compounds depend on the valency of chromium, where trivalent Cr (III) compounds are used for dietary Cr supplementation and hexavalent Cr (VI) compounds are used as corrosion inhibitors in commercial settings and are known to be human carcinogens . Humans can be exposed to chromium via ingestion, inhalation, and dermal or ocular exposure . Trivalent chromium (Cr(III)) ion is considered to be an essential dietary trace element as it is involved in metabolism of blood glucose, regulation of insulin resistance and metabolism of lipids. Clinical trials and other studies suggest the evidence of chromium intake improving glucose tolerance in patients with Type I and II diabetes, however its clinical application in the standard management of type II diabetes mellitus is not established. Chromium deficiency has been associated with a diabetic-like state, impaired growth, decreased fertility and increased risk of cardiovascular diseases .
According to the National Institute of Health, the daily dietary reference intake (DRI) of chromium for adult male and non-pregnant female are 35 μg and 25 μg, respectively . Chromium picolinate capsules may be used as nutritional adjuvant in patients with or at risk of type 2 diabetes mellitus (T2DM) to improve blood sugar metabolism and stabilize the levels of serum cholesterol. Chromium chloride is available as an intravenous injection for use as a supplement to intravenous solutions given for total parenteral nutrition (TPN) .
Trivalent chromium is part of glucose tolerance factor, an essential activator of insulin-mediated reactions. Chromium helps to maintain normal glucose metabolism and peripheral nerve function. Chromium increases insulin binding to cells, increases insulin receptor density and activates insulin receptor kinase leading to enhanced insulin sensitivity . In chromium deficiency, intravenous administration of chromium resulted in normalization of the glucose tolerance curve from the diabetic-like curve typical of chromium deficiency .
Trade Name | Productiv Pcos Orange Flav Chew |
Generic | Chromium + Vitamin D3 / Cholecalciferol + L-methylfolate + D Chiro Inositol + Myo-inositol / Inositol |
Weight | 100mg |
Type | Tablet |
Therapeutic Class | |
Manufacturer | Wanbury Ltd |
Available Country | India |
Last Updated: | January 7, 2025 at 1:49 am |
Uses
Chromium is an ingredient found in a variety of supplements and vitamins.
Indicated for use as a supplement to intravenous solutions given for total parenteral nutrition (TPN), to maintain chromium serum levels and to prevent depletion of endogenous stores and subsequent deficiency symptoms .
Productiv Pcos Orange Flav Chew is also used to associated treatment for these conditions: Mineral supplementation
How Productiv Pcos Orange Flav Chew works
Chromium is an essential nutrient involved in the metabolism of glucose, insulin and blood lipids. Its role in potentiating insulin signalling cascades has been implicated in several studies. Chromium upregulates insulin-stimulated insulin signal transduction via affecting effector molecules downstream of the insulin receptor (IR). IR-mediated signalling pathway involves phoshorylation of multiple intracellular domains and protein kinases, and downstream effector molecules . Upon activation by ligands, intracellular β-subunit of IR autophosphorylates and activates tyrosine kinase domain of the IR, followed by activation and phosphorylation of regulatory proteins and downstream signalling effectors including phosphatidylinositol 2-kinase (PI3K). PI3K activates further downstream reaction cascades to activate protein kinase B (Akt) to ultimately promote translocation of glucose transporter-4 (Glut4)-vesicles from the cytoplasm to the cell surface and regulate glucose uptake . Chromium enhances the kinase activity of insulin receptor β and increases the activity of downstream effectors, pI3-kinase and Akt.
Under insulin-resistant conditions, chromium also promotes GLUT-4 transporter translocation that is independent of activity of IR, IRS-1, PI3-kinase, or Akt; chromium mediates cholesterol efflux from the membranes via increasing fluidity of the membrane by decreasing the membrane cholesterol and upregulation of sterol regulatory element-binding protein . As a result, intracellular GLUT-4 transporters are stimulated to translocate from intracellular to the plasma membrane, leading to enhanced glucose uptake in muscle cells . Chromium attenuates the activity of PTP-1B in vitro, which is a negative regulator of insulin signaling. It also alleviates ER stress that is observed to be elevated the suppression of insulin signaling. ER stress is thought to activate c-Jun N-terminal kinase (JNK), which subsequently induces serine phosphorylation of IRS and aberration of insulin signalling . Transient upregulation of AMPK by chromium also leads to increased glucose uptake .
Toxicity
Oral LD50 for Cr (VI) is 135 - 175 mg/kg in mouse and 46 - 113 mg/kg in rat . Oral LD50 for Cr (III) in rat is >2000 mg/kg . LD50 of chromium (III) oxide in rats is reported to be > 5g/kg . Other LD50 values reported for rats include: 3.5 g/kg (CI 3.19-3.79 g/kg) for chromium sulphate; 11.3 g/kg for chromium (III) acetate; 3.3 g/kg for chromium nitrate; and 1.5 g/kg for chromium nitrate nonahydrate .
Acute overdose of chromium is rare and seriously detrimental effects of hexavalent chromium are primarily the result of chronic low-level exposure . In case of overdose with minimal toxicity following acute ingestion, treatment should be symptomatic and supportive . There is no known antidote for chromium toxicity.
Hexavalent chromium is a Class A carcinogen by the inhalation route of exposure and Class D by the oral route . The oral lethal dose in humans has been estimated to be 1-3 g of Cr (VI); oral toxicity most likely involves gastrointestinal bleeding rather than systemic toxicity . Chronic exposure may cause damage to the following organs: kidneys, lungs, liver, upper respiratory tract . Soluble chromium VI compounds are human carcinogens. Hexavalent chromium compounds were mutagenic in bacteria assays and caused chromosome aberrations in mammalian cells. There have been associations of increased frequencies of chromosome aberrations in lymphocytes from chromate production workers . In human cells in vitro, Cr (VI) caused chromosomal aberrations, sister chromatid exchanges and oxidative DNA damage .
Volume of Distribution
Absorbed chromium is distributed to all tissues of the body and its distribution in the body depends on the species, age, and chemical form . Circulating Cr (III) following oral or parenteral administration of different compounds can be taken up by tissues and accumulates in the liver, kidney, spleen, soft tissue, and bone .
Elimination Route
Chromium compounds are both absorbed by the lung and the gastrointestinal tract. Oral absorption of chromium compounds in humans can range between 0.5% and 10%, with the hexavalent (VI) chromium more easily absorbed than the trivalent (III) form . Absorption of chromium from the intestinal tract is low, ranging from less than 0.4% to 2.5% of the amount consumed . Vitamin C and the vitamin B niacin is reported to enhance chromium absorption .
Most hexavalent Cr (VI) undergoes partial intragastric reduction to Cr (III) upon absorption, which is an action mainly mediated by sulfhydryl groups of amino acids . Cr (VI) readily penetrates cell membranes and chromium can be found in both erythrocytes and plasma after gastrointestinal absorption of Cr (IV). In comparison, the presence of chromium is limited to the plasma as Cr (III) displays poor cell membrane penetration . Once transported through the cell membrane, Cr (VI) is rapidly reduced to Cr (III), which subsequently binds to macromolecules or conjugate with proteins. Cr (III) may be bound to transferrin or other plasma proteins, or as complexes, such as glucose tolerance factor (GTF).
Half Life
The elimination half-life of hexavalent chromium is 15 to 41 hours .
Clearance
Excretion of chromium is via the kidneys ranges from 3 to 50 μg/day . The 24-hour urinary excretion rates for normal human subjects are reported to be 0.22 μg/day .
Elimination Route
Absorbed chromium is excreted mainly in the urine, accounting for 80% of total excretion of chromium; small amounts are lost in hair, perspiration and bile . Chromium is excreted primarily in the urine by glomerular filtration or bound to a low molecular-weight organic transporter .