Rosuvastatina

Rosuvastatina Uses, Dosage, Side Effects, Food Interaction and all others data.

Rosuvastatina is a selective and competitive inhibitor of HMG-CoA reductase, the rate-limiting enzyme that converts 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate, a precursor of sterols, including cholesterol.The primary site of action of rosuvastatin is the liver, the target organ for lowering cholesterol. Rosuvastatina increases the number of hepatic LDL receptors on the cell surface, enhancing uptake and catabolism of LDL and it inhibits the hepatic synthesis of VLDL, thereby reducing the total number of VLDL and LDL particles.

Rosuvastatina is a synthetic, enantiomerically pure antilipemic agent. It is used to lower total cholesterol, low density lipoprotein-cholesterol (LDL-C), apolipoprotein B (apoB), non-high density lipoprotein-cholesterol (non-HDL-C), and trigleride (TG) plasma concentrations while increasing HDL-C concentrations. High LDL-C, low HDL-C and high TG concentrations in the plasma are associated with increased risk of atherosclerosis and cardiovascular disease. The total cholesterol to HDL-C ratio is a strong predictor of coronary artery disease and high ratios are associated with higher risk of disease. Increased levels of HDL-C are associated with lower cardiovascular risk. By decreasing LDL-C and TG and increasing HDL-C, rosuvastatin reduces the risk of cardiovascular morbidity and mortality.

Elevated cholesterol levels, and in particular, elevated low-density lipoprotein (LDL) levels, are an important risk factor for the development of CVD. Use of statins to target and reduce LDL levels has been shown in a number of landmark studies to significantly reduce the risk of development of CVD and all-cause mortality. Statins are considered a cost-effective treatment option for CVD due to their evidence of reducing all-cause mortality including fatal and non-fatal CVD as well as the need for surgical revascularization or angioplasty following a heart attack. Evidence has shown that even for low-risk individuals (with 19,20

Skeletal Muscle Effects

Trade Name Rosuvastatina
Availability Prescription only
Generic Rosuvastatin
Rosuvastatin Other Names Rosuvastatin, Rosuvastatina
Related Drugs Nexletol, Nexlizet, Zetia, Praluent, Repatha, atorvastatin, simvastatin, Lipitor, fenofibrate, ezetimibe
Type
Formula C22H28FN3O6S
Weight Average: 481.538
Monoisotopic: 481.168284538
Protein binding

Rosuvastatin is 88% bound to plasma proteins, mostly albumin. This binding is reversible and independent of plasma concentrations.

Groups Approved
Therapeutic Class Other Anti-anginal & Anti-ischaemic drugs, Statins
Manufacturer
Available Country
Last Updated: September 19, 2023 at 7:00 am
Rosuvastatina
Rosuvastatina

Uses

Primary hypercholesterolemia (type IIa including heterozygous familial hypercholesterolemia), mixed dyslipidemia (type IIb), or homozygous familial hypercholesterolemia in patients who have not responded adequately to diet and other appropriate measures; prevention of cardiovascular events in patients at high risk of a first cardiovascular event.

Rosuvastatina is also used to associated treatment for these conditions: Atherosclerosis, Atherosclerotic Cardiovascular Diseases, Cardiovascular Disease (CVD), Cardiovascular Events, Dysbetalipoproteinemia, Heterozygous Familial Hypercholesterolemia, High Blood Pressure (Hypertension), High Cholesterol, Homozygous Familial Hypercholesterolemia, Hypertension,Essential, Hypertriglyceridemias, Major Adverse Cardiovascular Events, Mixed Dyslipidemias, Postoperative Thromboembolism, Primary Hypercholesterolemia, Primary Hyperlipidemia, Cardiovascular Primary Prevention, Lipid-Lowering Therapy

How Rosuvastatina works

Rosuvastatina is a statin medication and a competitive inhibitor of the enzyme HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase, which catalyzes the conversion of HMG-CoA to mevalonate, an early rate-limiting step in cholesterol biosynthesis. Rosuvastatina acts primarily in the liver, where decreased hepatic cholesterol concentrations stimulate the upregulation of hepatic low density lipoprotein (LDL) receptors which increases hepatic uptake of LDL. Rosuvastatina also inhibits hepatic synthesis of very low density lipoprotein (VLDL). The overall effect is a decrease in plasma LDL and VLDL.

In vitro and in vivo animal studies also demonstrate that rosuvastatin exerts vasculoprotective effects independent of its lipid-lowering properties, also known as the pleiotropic effects of statins. This includes improvement in endothelial function, enhanced stability of atherosclerotic plaques, reduced oxidative stress and inflammation, and inhibition of the thrombogenic response.

Statins have also been found to bind allosterically to β2 integrin function-associated antigen-1 (LFA-1), which plays an important role in leukocyte trafficking and in T cell activation.

Rosuvastatina exerts an anti-inflammatory effect on rat mesenteric microvascular endothelium by attenuating leukocyte rolling, adherence and transmigration. The drug also modulates nitric oxide synthase (NOS) expression and reduces ischemic-reperfusion injuries in rat hearts. Rosuvastatina increases the bioavailability of nitric oxide by upregulating NOS and by increasing the stability of NOS through post-transcriptional polyadenylation. It is unclear as to how rosuvastatin brings about these effects though they may be due to decreased concentrations of mevalonic acid.

Dosage

Rosuvastatina dosage

Before treatment initiation the patient should be placed on a standard cholesterol-lowering diet that should continue during treatment. The dose should be individualized according to the goal of therapy and patient response, using current consensus guidelines.

Treatment of hypercholesterolemia: Patient of Asian origin or with risk factors for myopathy or rhabdomyolysis: initially 5 mg once daily increased if necessary to max. 20 mg daily.

Prevention of cardiovascular events: Patient of Asian origin or with risk factors for myopathy or rhabdomyolysis: initially 5 mg once daily increased if necessary to max. 20 mg daily.

Pediatric Use (Hyperlipidemia including familial hypercholesterolemia):

  • Child younger than 6 years: not recommended.
  • Child 6–9 years: initially 5 mg daily, increased if necessary at intervals of at least 4 weeks to usual max. 10 mg once daily.
  • Child 10–18 years: initially 5 mg daily, increased if necessary at intervals of at least 4 weeks to usual max. 20 mg once daily.

[Reduced dose required with concomitant atazanavir, darunavir, ezetimibe, fibrate, itraconazole, lopinavir, or tipranavir]

Use in the elderly (>70 years): A start dose of 5 mg is recommended. No dose adjustment necessary.

Renal insufficiency:Initially 5mg once daily (do not exceed 20 mg daily) if eGFR is 30-60 mL/minute/1.73 m2. Avoid if eGFR is less than 30 mL/minute/1.73 m2

Hepatic impairment:

  • Child-Pugh scores of <7: no increase in systemic exposure to rosuvastatin.
  • Child-Pugh scores of 8 and 9: increased systemic exposure has been observed. In these patients an assessment of renalfunction should be considered.
  • Child-Pugh scores >9: no study.

Rosuvastatina is contraindicated in patients withactive liver disease.

Race: Increased systemic exposure has been seen in Asian subjects. The recommended starting dose is 5 mg for patients of Asian ancestry. The 40 mg dose is contraindicated in these patients.

Genetic polymorphisms: Specific types of genetic polymorphisms are known that can lead to increased rosuvastatin exposure. For patients who are known to have such specific types of polymorphisms, a lower daily dose of Rosuvastatina is recommended.

Dosage in patients with pre-disposing factors to myopathy: The recommended starting dose is 5 mg in patients with predisposing factors to myopathy. The 40 mg dose is contraindicated in some of these patients.

Rosuvastatina may be given at any time of day, with or without food

Side Effects

Common or very common: Proteinuria.

Rare: Hepatitis, jaundice.

Very rare: Gynecomastia, hematuria, hepati failure, interstitial lung disease, lupus erythematosus-like reactions, pancreatitis.

Frequency not known: Alopecia, altered liver function tests, amnesia, arthralgia, asthenia, depression, dizziness, edema, fatigue, gastrointestinal disturbances, headache, hypersensitivity reactions, hyperglycemia -may be associated with the development of diabetes mellitus (particularly in those already at risk of the condition), myalgia, myopathy, myositis, paresthesia, peripheral neuropathy, pruritus, rash, rhabdomyolysis, sexual dysfunction, sleep disturbance, Stevens-Johnson syndrome, thrombocytopenia, urticaria, visual disturbance.

Muscle effects: The risk of myopathy, myositis, and rhabdomyolysis associated with statin use is rare. Although myalgia has been reported commonly in patients receiving statins, muscle toxicity truly attributable to statin use is rare. Muscle toxicity can occur with all statins, however the likelihood increases with higher doses If muscular symptoms or raised creatine kinase occur during treatment, other possible causes (e.g. rigorous physical activity, hypothyroidism, infection, recent trauma, and drug or alcohol addiction) should be excluded before statin therapy is implicated, particularly if statin treatment has previously been tolerated for more than 3 months. When a statin is suspected to be the cause of myopathy, and creatine kinase concentration is markedly elevated (more than 5 times upper limit of normal), or if muscular symptoms are severe, treatment should be discontinued. If symptoms resolve and creatine kinase concentrations return to normal, the statin should be reintroduced at a lower dose and the patient monitored closely; an alternative statin should be prescribed if unacceptable side-effects are experienced with a particular statin. Statins should not be discontinued in the event of small, asymptomatic elevations of creatine kinase. Routine monitoring of creatine kinase is unnecessary in asymptomatic patients.Statins should not be discontinued if there is an increase in the blood-glucose concentration or HbA1C as the benefits continue to outweigh the risks.

Interstitial lung disease: If patients develop symptoms such as dyspnoea, cough, and weight loss, they should seek medical attention.

Toxicity

Generally well-tolerated. Side effects may include myalgia, constipation, asthenia, abdominal pain, and nausea. Other possible side effects include myotoxicity (myopathy, myositis, rhabdomyolysis) and hepatotoxicity. To avoid toxicity in Asian patients, lower doses should be considered. Pharmacokinetic studies show an approximately two-fold increase in peak plasma concentration and AUC in Asian patients (Philippino, Chinese, Japanese, Korean, Vietnamese, or Asian-Indian descent) compared to Caucasian patients.

Precaution

Hypothyroidism should be managed adequately before starting treatment with a statin. Statins should be used with caution in those with a history of liver disease or with a high alcohol intake. There is little information available on a rational approach to liver-function monitoring; however, a NICE guideline1 suggests that liver enzymes should be measured before treatment, and repeated within 3 months and at 12 months of starting treatment, unless indicated at other times by signs or symptoms suggestive of hepatotoxicity. Those with serum transaminases that are raised, but less than 3 times the upper limit of the reference range, should not be routinely excluded from statin therapy. Those with serum transaminases of more than 3 times the upper limit of the reference range should discontinue statin therapy.

Statins should be used with caution in those with risk factors for myopathy or rhabdomyolysis; patients should be advised to report unexplained muscle pain. Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose galactose malabsorption should not take this medicine.

Interaction

Cyclosporine: Cyclosporine increased rosuvastatin exposure (AUC) 7-fold. Therefore, in patients taking cyclosporine, the dose of Rosuvastatina should not exceed 5 mg once daily.

Gemfibrozil: Gemfibrozil significantly increased rosuvastatin exposure. Due to an observed increased risk of myopathy/rhabdomyolysis, combination therapy with Rosuvastatina and gemfibrozil should be avoided. If used together, the dose of Rosuvastatina should not exceed 10 mg once daily.

Protease Inhibitors: Coadministration of rosuvastatin with certain protease inhibitors has differing effects on rosuvastatin exposure. Simeprevir, which is a hepatitis C virus (HCV) protease inhibitor, or combinations of atazanavir/ritonavir or lopinavir/ritonavir, which are HIV-1 protease inhibitors, increase rosuvastatin exposure (AUC) up to threefold. For these protease inhibitors, the dose of Rosuvastatina should not exceed 10 mg once daily. The combinations of fosamprenavir / ritonavir or tipranavir / ritonavir, which are HIV 1 protease inhibitors, produce little or no change in rosuvastatin exposure. Caution should be exercised when rosuvastatin is coadministered with protease inhibitors.

Coumarin Anticoagulants: Rosuvastatina significantly increased INR in patients receiving coumarin anticoagulants. Therefore, caution should be exercised when coumarin anticoagulants are given in conjunction with Rosuvastatina. In patients taking coumarin anticoagulants and Rosuvastatina concomitantly, INR should be determined before starting Rosuvastatina and frequently enough during early therapy to ensure that no significant alteration of INR occurs.

Niacin: The risk of skeletal muscle effects may be enhanced when Rosuvastatina is used in combination with lipid-modifying doses (>1 g/day) of niacin; caution should be used when prescribing with Rosuvastatina.

Fenofibrate: When Rosuvastatina was coadministered with fenofibrate, no clinically significant increase in the AUC of rosuvastatin or fenofibrate was observed. Because it is known that the risk of myopathy during treatment with statins is increased with concomitant use of fenofibrates, caution should be used when prescribing fenofibrates with Rosuvastatina.

Colchicine: Cases of myopathy, including rhabdomyolysis, have been reported with statins, including rosuvastatin, coadministered with colchicine, and caution should be exercised when prescribing Rosuvastatina with colchicine

Food Interaction

  • Take with or without food. Co-administration with food does not affect absorption.

Rosuvastatina Alcohol interaction

[Moderate]

Concomitant use of statin medication with substantial quantities of alcohol may increase the risk of hepatic injury.

Transient increases in serum transaminases have been reported with statin use and while these increases generally resolve or improve with continued therapy or a brief interruption in therapy, there have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins.

Patients who consume substantial quantities of alcohol and/or have a history of liver disease may be at increased risk for hepatic injury.

Active liver disease or unexplained transaminase elevations are contraindications to statin use.



Patients should be counseled to avoid substantial quantities of alcohol in combination with statin medications and clinicians should be aware of the increased risk for hepatotoxicity in these patients.

Volume of Distribution

Rosuvastatina undergoes first-pass extraction in the liver, which is the primary site of cholesterol synthesis and LDL-C clearance. The mean volume of distribution at steady-state of rosuvastatin is approximately 134 litres.

Elimination Route

In a study of healthy white male volunteers, the absolute oral bioavailability of rosuvastatin was found to be approximately 20% while absorption was estimated to be 50%, which is consistent with a substantial first-pass effect after oral dosing. Another study in healthy volunteers found that the peak plasma concentration (Cmax) of rosuvastatin was 6.06ng/mL and was reached at a median of 5 hours following oral dosing. Both Cmax and AUC increased in approximate proportion to dose. Neither food nor evening versus morning administration was shown to have an effect on the AUC of rosuvastatin. Many statins are known to interact with hepatic uptake transporters and thus reach high concentrations at their site of action in the liver.

Breast Cancer Resistance Protein (BCRP) is a membrane-bound protein that plays an important role in the absorption of rosuvastatin, particularly as CYP3A4 has minimal involvement in its metabolism. Evidence from pharmacogenetic studies of c.421C>A single nucleotide polymorphisms (SNPs) in the gene for BCRP has demonstrated that individuals with the 421AA genotype have reduced functional activity and 2.4-fold higher AUC and Cmax values for rosuvastatin compared to study individuals with the control 421CC genotype. This has important implications for the variation in response to the drug in terms of efficacy and toxicity, particularly as the BCRP c.421C>A polymorphism occurs more frequently in Asian populations than in Caucasians. Other statin drugs impacted by this polymorphism include fluvastatin and atorvastatin.

Genetic differences in the OATP1B1 (organic-anion-transporting polypeptide 1B1) hepatic transporter have also been shown to impact rosuvastatin pharmacokinetics. Evidence from pharmacogenetic studies of the c.521T>C SNP showed that rosuvastatin AUC was increased 1.62-fold for individuals homozygous for 521CC compared to homozygous 521TT individuals. Other statin drugs impacted by this polymorphism include simvastatin, pitavastatin, atorvastatin, and pravastatin.

For patients known to have the above-mentioned c.421AA BCRP or c.521CC OATP1B1 genotypes, a maximum daily dose of 20mg of rosuvastatin is recommended to avoid adverse effects from the increased exposure to the drug, such as muscle pain and risk of rhabdomyolysis.

Half Life

The elimination half-life (t½) of rosuvastatin is approximately 19 hours and does not increase with increasing doses.

Elimination Route

Rosuvastatina is not extensively metabolized; approximately 10% of a radiolabeled dose is recovered as metabolite. Following oral administration, rosuvastatin and its metabolites are primarily excreted in the feces (90%). After an intravenous dose, approximately 28% of total body clearance was via the renal route, and 72% by the hepatic route.

A study in healthy adult male volunteers found that approximately 90% of the rosuvastatin dose was recovered in feces within 72 hours after dose, while the remaining 10% was recovered in urine. The drug was completely excreted from the body after 10 days of dosing. They also found that approximately 76.8% of the excreted dose was unchanged from the parent compound, with the remaining dose recovered as the metabolites n-desmethyl rosuvastatin and rosuvastatin-5S-lactone.

Renal tubular secretion is responsible for >90% of total renal clearance, and is believed to be mediated primarily by the uptake transporter OAT3 (Organic anion transporter 1), while OAT1 had minimal involvement.

Pregnancy & Breastfeeding use

Pregnancy Category X. Teratogenic effects. Rosuvastatina is contraindicated in pregnancy and lactation. Women of child bearing potential should use appropriate contraceptive measures. If a patient becomes pregnant during use of this product, treatment should be discontinued immediately.

Rosuvastatina is excreted in the milk of rats. There are no data with respect to excretion in milk in humans

Contraindication

Rosuvastatina is contraindicated:

  • In patients with hypersensitivity to rosuvastatin or to any of the excipients.
  • In patients with active liver disease including unexplained, persistent elevations of serum transaminases and any serum transaminase elevation exceeding 3 x the upper limit of normal (ULN).
  • In patients with severe renal impairment (creatinine clearance < mL/minute/1.73m2).
  • In patients with myopathy.
  • In patients receiving concomitant cyclosporine.
  • During pregnancy and lactation and in women of childbearing potential not using appropriate contraceptive measures.

Special Warning

Age and sex: There was no clinically relevant effect of age or sex on the pharmacokinetics of Rosuvastatina in adults.

Race: Pharmacokinetic studies show an increase in exposure in Asian subjects compared with Caucasians.

Severe renal impairment (not on hemodialysis): Starting dose is 5 mg, not to exceed 10 mg

Use in the elderly: Patients > 70 years: A start dose of 5 mg is recommended. No dose adjustment necessary.

Renal insufficiency: Initially 5mg once daily (do not exceed 20mg daily) if eGFR is 30–60 mL/ minute/ 1.73 m2. Avoid if eGFR is less than 30 mL /minute/ 1.73 m2.

Genetic polymorphisms: Specific types of genetic polymorphisms are known that can lead to increased rosuvastatin exposure. For patients who are known to have such specific types of polymorphisms, a lower daily dose of Rosuvastatina is recommended.

Dosage in patients with pre-disposing factors to myopathy: The recommended starting dose is 5 mg in patients with predisposing factors to myopathy. The 40 mg dose is contraindicated in some of these patients.

Acute Overdose

There is no specific treatment in the event of overdose. In the event of overdose, the patient should be treated symptomatically and supportive measures instituted as required. Haemodialysis is unlikely to be of benefit.

Storage Condition

Keep out of the reach of children. Store below 30° C. Keep in the original package in a cool & dry place in order to protect from light and moisture.

Innovators Monograph

You find simplified version here Rosuvastatina

Rosuvastatina contains Rosuvastatin see full prescribing information from innovator Rosuvastatina Monograph, Rosuvastatina MSDS, Rosuvastatina FDA label

FAQ

What is Rosuvastatina used for?

Rosuvastatina used to lower cholesterol if you have been diagnosed with high cholesterol. Rosuvastatina also taken to prevent heart and blood vessel disease, heart attacks and strokes.

How safe is Rosuvastatina?

Rosuvastatina is safe to take for a long time, even many years. In fact, It works best when you take it for a long time.

How does Rosuvastatina work?

Rosuvastatina works by slowing the production of cholesterol in the body to decrease the amount of cholesterol that may build up on the walls of the arteries and block blood flow to the heart, brain, and other parts of the body.

What are the common side effects of Rosuvastatina?

Common side effects of Rosuvastatina are include:

  • headache,
  • muscle pain, abdominal.
  • pain,
  • weakness,
  • nausea,
  • dizziness,
  • hypersensitivity reactions (including rash, pruritus, hives, and swelling), and.
  • pancreatitis.

Is Rosuvastatina safe during pregnancy?

Rosuvastatina is not recommended during pregnancy or breastfeeding, as there's no firm evidence it's safe. If you want to get pregnant, speak to your doctor. It's best to stop taking Rosuvastatina at least 3 months before you start trying for a baby.

Is Rosuvastatina safe during breastfeeding?

Levels of Rosuvastatina in milk are low, but no relevant published information exists with its use during breastfeeding. The consensus opinion is that women taking a statin should not breastfeed because of a concern with disruption of infant lipid metabolism.

Can I drink alcohol with Rosuvastatina?

Yes, you can drink alcohol while taking Rosuvastatina. But drinking a lot of alcohol may mean you're more likely to get muscle and liver side effects. Try not to drink more than 14 units of alcohol a week.

When should I take Rosuvastatina?

It is usual to take Rosuvastatina once a day. You can take it at any time as long as you stick to the same time every day.

How long does it take for Rosuvastatina to reduce cholesterol?

Peak levels of Rosuvastatina are seen within three to five hours of oral administration.

How long does Rosuvastatina stay in my system?

The terminal half-life of Rosuvastatina is relatively long at approximately 18 h to 20 h .

Can I take Rosuvastatina every other day?

Dosing a Rosuvastatina every other day (EOD) may provide significant lipoprotein changes while avoiding common adverse effects in this statin-intolerant population.

Can I stop taking Rosuvastatina suddenly?

Don't suddenly stop taking your prescribed medication without talking to your doctor. If you have side effects from the Rosuvastatina, your doctor might adjust your dosage or recommend a different Rosuvastatina.

How long one can take Rosuvastatina?

Peak levels of Rosuvastatina are seen within three to five hours of oral administration.

Is it safe to take Rosuvastatina long-term?

Long-term use of Rosuvastatina might have a beneficial effect on the brain since they help prevent strokes and protect the health of arteries in the brain.

Is Rosuvastatina bad for kidneys?

It is clear that Rosuvastatina, and other statins, are very safe and useful agents and do not appear to present significant risks to hepatic or renal safety.

Who should not take Rosuvastatina?

This medication contains Rosuvastatina. Do not take Crestor if you are allergic to Rosuvastatina or any ingredients contained in this drug.Keep out of reach of children. In case of overdose, get medical help or contact a Poison Control Center immediately.

What happens if I miss a dose?

If you miss a dose of Rosuvastatina, take the missed dose as soon as you realize that you have missed a dose. You should, however, skip the missed dose if it is close to the time for your next regular dose. Do not take more than one dose of Rosuvastatina within any 12 hour period.

What happen if I take too much Rosuvastatina?

If you take too much, You could have dangerous levels of the drug in your body. Symptoms of an overdose of this drug can include: severe pain in the abdomen .vomiting.

*** Taking medicines without doctor's advice can cause long-term problems.
Share