Sapofen Plus Uses, Dosage, Side Effects and more

Ibuprofen is a non-selective inhibitor of cyclooxygenase, an enzyme invovled in prostaglandin synthesis via the arachidonic acid pathway. Its pharmacological effects are believed to be due to inhibition cylooxygenase-2 (COX-2) which decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever and swelling. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration. Ibuprofen is administered as a racemic mixture. The R-enantiomer undergoes extensive interconversion to the S-enantiomer in vivo. The S-enantiomer is believed to be the more pharmacologically active enantiomer.

Ibuprofen has multiple actions in different inflammatory pathways involved in acute and chronic inflammation. The main effects reported in ibuprofen are related to the control of pain, fever and acute inflammation by the inhibition of the synthesis of prostanoids by COX-1 and COX-2. Pain relief is attributed to peripheral affected regions and central nervous system effects in the pain transmission mediated by the dorsal horn and higher spinothalamic tract. Some reports have tried to link the pain regulation with a possible enhancement on the synthesis of endogenous cannabinoids and action on the NMDA receptors. The effect on pain has been shown to be related to the cortically evoked potentials.

The antipyretic effect is reported to be linked to the effect on the prostanoid synthesis due to the fact that the prostanoids are the main signaling mediator of pyresis in the hypothalamic-preoptic region.

The use of ibuprofen in dental procedures is attributed to the local inhibition of prostanoid production as well as to anti-oedemic activity and an increase of plasma beta-endorphins. Some reports have suggested a rapid local reduction of the expression of COX-2 in dental pulp derived by the administration of ibuprofen.

Pseudoephedrine is structurally related to ephedrine but exerts a weaker effect on the sympathetic nervous system. Both drugs naturally occur in in ephedra plant which have a history of use in traditional Eastern medicine and were first researched in the west in 1889. The decongestant effect of pseudoephedrine was described in dogs in 1927.

Pseudoephedrine causes vasoconstriction which leads to a decongestant effect. It has a short duration of action unless formulated as an extended release product. Patients should be counselled regarding the risk of central nervous system stimulation.

Trade Name Sapofen Plus
Generic Ibuprofen + Pseudoephedrine
Type
Therapeutic Class
Manufacturer
Available Country Oman
Last Updated: January 7, 2025 at 1:49 am

Uses

Ibuprofen is used

Pseudoephedrine is an alpha and beta adrenergic agonist used to treat nasal and sinus congestion, as well as allergic rhinitis.

Pseudoephedrine is a sympathomimetic amine used for its decongestant activity.

Sapofen Plus is also used to associated treatment for these conditions: Ankylosing Spondylitis (AS), Common Cold, Cystic Fibrosis (CF), Fever, Gastric Ulcer, Gouty Arthritis, Headache, Insomnia, Juvenile Idiopathic Arthritis (JIA), Menstrual Distress (Dysmenorrhea), Migraine, Mild pain, Nasal Congestion, Osteoarthritis (OA), Pain, Pain, Acute, Pain, Inflammatory, Patent Ductus Arteriosus (PDA), Pericarditis, Primary Dysmenorrhoea, Rheumatoid Arthritis, Severe Pain, Sinus pressure, Mild to moderate pain, Minor aches and pains, Moderate PainAllergic Rhinitis (AR), Allergies, Common Cold, Common Cold Associated With Cough, Common Cold/Flu, Cough, Cough caused by Common Cold, Eye allergy, Fever, Flu caused by Influenza, Headache, Irritative cough, Nasal Allergies, Nasal Congestion, Nasal Congestion caused by Common Cold, Pain, Perennial Allergy, Priapism, Respiratory Allergy, Rhinorrhoea, Seasonal Allergic Rhinitis, Seasonal Allergies, Sinus Congestion, Sinusitis, Sneezing, Sore Throat, Symptoms of Acute Bronchitis Accompanied by Coughing, Throat irritation, Upper Respiratory Tract Infection, Upper respiratory tract congestion, Upper respiratory tract signs and symptoms, Dry cough, Minor aches and pains, Sinus pain, Watery itchy eyes, Airway secretion clearance therapy

How Sapofen Plus works

The exact mechanism of action of ibuprofen is unknown. However, ibuprofen is considered an NSAID and thus it is a non-selective inhibitor of cyclooxygenase, which is an enzyme involved in prostaglandin (mediators of pain and fever) and thromboxane (stimulators of blood clotting) synthesis via the arachidonic acid pathway.

Ibuprofen is a non-selective COX inhibitor and hence, it inhibits the activity of both COX-1 and COX-2. The inhibition of COX-2 activity decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever, and swelling while the inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration.

Pseudoephedrine acts mainly as an agonist of alpha adrenergic receptors and less strongly as an agonist of beta adrenergic receptors.[A10896] This agonism of adrenergic receptors produces vasoconstriction which is used as a decongestant and as a treatment of priapism. Pseudoephedrine is also an inhibitor of norepinephrine, dopamine, and serotonin transporters.

The sympathomimetic effects of pseudoephedrine include an increase in mean arterial pressure, heart rate, and chronotropic response of the right atria. Pseudoephedrine is also a partial agonist of the anococcygeal muscle. Pseudoephedrine also inhibits NF-kappa-B, NFAT, and AP-1.

Dosage

Sapofen Plus dosage

Oral Administrations-

For Children:

For adult:

Topical Administrations-

Pain and inflammation associated with musculoskeletal and joint disorder: As 5% cream, foam, gel, spray soln or 10% gel: Apply onto affected area.

Side Effects

Usually Ibuprofen has a low incidence of side effects. The most frequent side effects are gastrointestinal disturbances. Peptic ulceration and gastrointestinal bleeding have occasionally been reported. Other side effects include headache, dizziness, nervousness, skin rash, pruritus, drowsiness, insomnia, blurred vision and other ocular reactions, hypersensitivity reaction, abnormal liver function test, impairment of renal function, agranulocytosis and thrombocytopenia.

Toxicity

The symptoms of overdose are presented in individuals that consumed more than 99 mg/kg. Most common symptoms of overdose are abdominal pain, nausea, vomiting, lethargy, vertigo, drowsiness (somnolence), dizziness and insomnia. Other symptoms of overdose include headache, loss of consciousness, tinnitus, CNS depression, convulsions and seizures. May rarely cause metabolic acidosis, abnormal hepatic function, hyperkalemia, renal failure, dyspnea, respiratory depression, coma, acute renal failure, and apnea (primarily in very young pediatric patients).

The reported LD50 of ibuprofen is of 636 mg/kg in rat, 740 mg/kg in mouse and 495 mg/kg in guinea pig.

The oral LD50 of pseudoephedrine is 2206mg/kg in rats and 726mg/kg in mice.

Patients experiencing an overdose of pseudoephedrine may present with giddiness, headache, nausea, vomiting, sweating, thirst, tachycardia, precordial pain, palpitations, difficulty urinating, muscle weakness, muscle tension, anxiety, restlessness, insomnia, toxic psychosis, cardiac arrhythmias, circulatory collapse, convulsions, coma, and respiratory failure. Treat overdose with symptomatic and supportive treatment including removal of unabsorbed drug.

Precaution

Ibuprofen should be given with caution to patients with bleeding disorders, cardiovascular diseases, peptic ulceration or a history of such ulceration and in those who are receiving coumarin anticoagulants and in patients with renal or hepatic impairment.

Interaction

Increased risk of GI bleeding with warfarin, corticosteroids, SSRIs and aspirin. May reduce the natriuretic effects of diuretics. Reduced antihypertensive effect of ACE inhibitors and angiotensin II receptor antagonists. May increase toxicity of lithium and methotrexate. Increased nephrotoxicity with ciclosporin and tacrolimus.

Volume of Distribution

The apparent volume of distribution of ibuprofen is of 0.1 L/kg.

The apparent volume of distribution of pseudoephedrin is 2.6-3.3L/kg.

Elimination Route

It is very well absorbed orally and the peak serum concentration can be attained in 1 to 2 hours after extravascular administration. When ibuprofen is administered immediately after a meal there is a slight reduction in the absorption rate but there is no change in the extent of the absorption.

When orally administered, the absorption of ibuprofen in adults is very rapidly done in the upper GI tract. The average Cmax, Tmax and AUC ranges around 20 mcg/ml, 2 h and 70 mcg.h/ml. These parameters can vary depending on the enantiomer form, route, and dose of administration.

A 240mg oral dose of pseudoephedrine reaches a Cmax of 246.3±10.5ng/mL fed and 272.5±13.4ng/mL fasted, with a Tmax of 6.60±1.38h fed and 11.87±0.72h fasted, with an AUC of 6862.0±334.1ng*h/mL fed and 7535.1±333.0ng*h/mL fasted.

Half Life

The serum half-life of ibuprofen is 1.2-2 hours. In patients with a compromised liver function, the half-life can be prolonged to 3.1-3.4 hours.

The mean elimination half life of pseudoephedrine is 6.0h.

Clearance

The clearance rate ranges between 3-13 L/h depending on the route of administration, enantiomer type and dosage.

A 60mg oral dose of pseudoephedrine has a clearance of 5.9±1.7mL/min/kg.

Elimination Route

Ibuprofen is rapidly metabolized and eliminated in the urine thus, this via accounts for more than 90% of the administered dose. It is completely eliminated in 24 hours after the last dose and almost all the administered dose goes through metabolism, representing about 99% of the eliminated dose. The biliary excretion of unchanged drug and active phase II metabolites represents 1% of the administered dose.

In summary, ibuprofen is excreted as metabolites or their conjugates. The elimination of ibuprofen is not impaired by old age or the presence of renal impairment.

55-75% of an oral dose is detected in the urine as unchanged pseudoephedrine.

Pregnancy & Breastfeeding use

Ibuprofen is not recommended during pregnancy or for use in nursing mothers.

Contraindication

Ibuprofen should not be given to patients with hypersensitivity to lbuprofen and to individuals who show nasal polyps, angioedema, bronchospastic reactivity to aspirin or other non-steroidal anti-inflammatory drug. Ibuprofen is contraindicated in patients with active or previous peptic ulceration & gastro-intestinal ulceration or bleeding.

Acute Overdose

Gastric lavage, correction of blood electrolytes (if necessary). There is no specific antidote for Ibuprofen

Storage Condition

Keep in a cool & dry place. Keep out of the reach of children.

Innovators Monograph


*** Taking medicines without doctor's advice can cause long-term problems.
Share