Telista Rm Uses, Dosage, Side Effects and more
Ramipril is an angiotensin converting enzyme (ACE) inhibitor, which after hydrolysis to ramiprilat, blocks the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. So, inhibition of ACE by ramipril results in decreased plasma angiotensin II, which leads to decreased vasopressor activity and decreased aldosterone secretion. Thus ramipril exerts its antihypertensive activity. It is also effective in the management of heart failure and reduction of the risk of stroke, myocardial infarction and death from cardiovascular events. It is long acting and well tolerated; so, can be used in long term therapy.
Ramipril is an ACE inhibitor similar to benazepril, fosinopril and quinapril. It is an inactive prodrug that is converted to ramiprilat in the liver, the main site of activation, and kidneys. Ramiprilat confers blood pressure lowing effects by antagonizing the effect of the RAAS. The RAAS is a homeostatic mechanism for regulating hemodynamics, water and electrolyte balance. During sympathetic stimulation or when renal blood pressure or blood flow is reduced, renin is released from the granular cells of the juxtaglomerular apparatus in the kidneys. In the blood stream, renin cleaves circulating angiotensinogen to ATI, which is subsequently cleaved to ATII by ACE. ATII increases blood pressure using a number of mechanisms. First, it stimulates the secretion of aldosterone from the adrenal cortex. Aldosterone travels to the distal convoluted tubule (DCT) and collecting tubule of nephrons where it increases sodium and water reabsorption by increasing the number of sodium channels and sodium-potassium ATPases on cell membranes. Second, ATII stimulates the secretion of vasopressin (also known as antidiuretic hormone or ADH) from the posterior pituitary gland. ADH stimulates further water reabsorption from the kidneys via insertion of aquaporin-2 channels on the apical surface of cells of the DCT and collecting tubules. Third, ATII increases blood pressure through direct arterial vasoconstriction. Stimulation of the Type 1 ATII receptor on vascular smooth muscle cells leads to a cascade of events resulting in myocyte contraction and vasoconstriction. In addition to these major effects, ATII induces the thirst response via stimulation of hypothalamic neurons. ACE inhibitors inhibit the rapid conversion of ATI to ATII and antagonize RAAS-induced increases in blood pressure. ACE (also known as kininase II) is also involved in the enzymatic deactivation of bradykinin, a vasodilator. Inhibiting the deactivation of bradykinin increases bradykinin levels and may sustain the effects of ramiprilat by causing increased vasodilation and decreased blood pressure.
Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Telmisartan blocks the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the AT1 receptor in many tissues, such as vascular smooth muscle and the adrenal gland. Its action is therefore independent of the pathways for angiotensin II synthesis.
There is also an AT2 receptor found in many tissues, but AT2 is not known to be associated with cardiovascular homeostasis. Telmisartan has a much greater affinity ( > 3,000 fold) for the AT1 receptor than for the AT2 receptor.
Blockade of the renin-angiotensin system with ACE inhibitors, which inhibit the biosynthesis of angiotensin II from angiotensin I, is widely used in the treatment of hypertension. ACE inhibitors also inhibit the degradation of bradykinin, a reaction also catalyzed by ACE. Because telmisartan does not inhibit ACE (kininase II), it does not affect the response to bradykinin. Whether this difference has clinical relevance is not yet known. Telmisartan does not bind to or block other hormone receptors or ion channels known to be important in cardiovascular regulation.
Blockade of the angiotensin II receptor inhibits the negative regulatory feedback of angiotensin II on renin secretion, but the resulting increased plasma renin activity and angiotensin II circulating levels do not overcome the effect of telmisartan on blood pressure.
Telmisartan is an orally active nonpeptide angiotensin II antagonist that acts on the AT1 receptor subtype. It has the highest affinity for the AT1 receptor among commercially available ARBS and has minimal affinity for the AT2 receptor. New studies suggest that telmisartan may also have PPARγ agonistic properties that could potentially confer beneficial metabolic effects, as PPARγ is a nuclear receptor that regulates specific gene transcription, and whose target genes are involved in the regulation of glucose and lipid metabolism, as well as anti-inflammatory responses. This observation is currently being explored in clinical trials. Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Telmisartan works by blocking the vasoconstrictor and aldosterone secretory effects of angiotensin II.
Trade Name | Telista Rm |
Generic | Ramipril + Telmisartan |
Weight | 5mg, 2.5mg |
Type | Tablet |
Therapeutic Class | |
Manufacturer | Lupin |
Available Country | India |
Last Updated: | January 7, 2025 at 1:49 am |
Uses
Ramiprilis used for the following cases:
- Mild to severe hypertension
- Congestive Heart failure.
- To reduce the risk of stroke, myocardial infarction and death from cardiovascular events in patients with a history of cardiovascular disease.
- Proteinuric non-diabetic nephropathy.
Telmisartan is an angiotensin II receptor blocker (ARB) used for treatment of hypertension and Cardiovascular (CV) risk reduction in patients who are used for ACE inhibitors.
Telista Rm is also used to associated treatment for these conditions: Cardiovascular Events, Diabetic Nephropathy, Heart Failure, Heart Failure With Reduced Ejection Fraction (HFrEF), High Blood Pressure (Hypertension), Myocardial Infarction, Nondiabetic proteinuric chronic kidney disease, Stroke, High risk cardiovascular eventCardiovascular Events, Diabetic Nephropathy, Heart Failure, High Blood Pressure (Hypertension)
How Telista Rm works
Ramipril inhibits the RAAS system by binding to and inhibiting ACE thereby preventing the conversion of angiotensin I to angiotensin II. As plasma levels of angiotensin II fall, less activation of the G-protein coupled receptors angiotensin receptor I (AT1R) and angiotensin receptor II (AT2R) occurs.
AT1R mediates vasoconstriction, inflammation, fibrosis, and oxidative stress through a variety of signaling pathways. These include Gq coupling to the inositol triphosphate pathway, activation of phospholipases C, A2, and D which contribute to eicosanoid production, activation of Ca2+ These counteracting effects are shared by the Mas receptor which is activated by Ang(1-7), a subtype of angiotensin produced by plasma esterases from AngI or by ACE2 from AngII produced through a secondary pathway by tonin and cathepsin G. Ang(1-7) also activates AT2R although the bulk of its effect is mediated by MasR.
ACE is also responsible for the breakdown of bradykinin. The resulting buildup of bradykinin due to ACE inhibition is thought to mediate the characteristic dry-cough as a side effect of ACE inhibitor medications.
Telmisartan interferes with the binding of angiotensin II to the angiotensin II AT1-receptor by binding reversibly and selectively to the receptors in vascular smooth muscle and the adrenal gland. As angiotensin II is a vasoconstrictor, which also stimulates the synthesis and release of aldosterone, blockage of its effects results in decreases in systemic vascular resistance. Telmisartan does not inhibit the angiotensin converting enzyme, other hormone receptors, or ion channels. Studies also suggest that telmisartan is a partial agonist of PPARγ, which is an established target for antidiabetic drugs. This suggests that telmisartan can improve carbohydrate and lipid metabolism, as well as control insulin resistance without causing the side effects that are associated with full PPARγ activators.
Dosage
Telista Rm dosage
Dosage of Ramipril must be adjusted according to the patient tolerance and response.
Hypertension: For the management of hypertension in adults not receiving a diuretic, the usual initial dose of Ramipril is 1.25 - 2.5 mg once daily. Dosage generally is adjusted no more rapidly than at 2 week intervals. The usual maintenance dosage in adults is 2.5 - 20 mg daily given as a single dose or in 2 divided doses daily. If BP is not controlled with Ramipril alone, a diuretic may be added.
Congestive heart failure after myocardial infarction: In this case, Ramipril therapy may be initiated as early as 2 days after myocardial infarction. An initial dose of 2.5 mg twice daily is recommended, but if hypotension occurs, dose should be reduced to 1.25 mg twice daily. Therapy is then titrated to a target daily dose of 5 mg twice daily.
Prevention of major cardiovascular events: In this case, the recommended dose is 2.5 mg once daily for the first week of therapy and 5 mg once daily for the following 3 weeks; dosage then may be increased, as tolerated, to a maintenance dosage of 10 mg once daily.
Hypertension: Dosage must be individualized. The usual starting dose of Telmisartan tablets is 40 mg once a day. Blood pressure response is dose-related over the range of 20 to 80 mg
Most of the antihypertensive effect is apparent within 2 weeks and maximal reduction is generally attained after 4 weeks. When additional blood pressure reduction beyond that achieved with 80 mg Telmisartan is required, adiuretic may be added.
No initial dosage adjustment is necessary for elderly patients or patients with renal impairment, including those on hemodialysis. Patients ondialysismay develop orthostatic hypotension; their blood pressure should be closely monitored.
Cardiovascular Risk Reduction: The recommended dose of Telmisartan tablets is 80 mg once a day and can be administered with or without food. It is not known whether doses lower than 80 mg of telmisartan are effective in reducing the risk of cardiovascular morbidity and mortality.
When initiating Telmisartan therapy for cardiovascular risk reduction, monitoring of blood pressure is recommended, and if appropriate, adjustment of medications that lower blood pressure may be necessary.
Telmisartan tablets may be administered with other antihypertensive agents with or without food.
Side Effects
Ramipril is generally well tolerated. Dizziness, headache, fatigue and asthenia are commonly reported side effects. Other side effects occurring less frequently include symptomatic hypotension, cough, nausea, vomiting, diarrhoea, rash, urticaria, oliguria, anxiety, amnesia etc. Angioneurotic oedema, anaphylactic reactions and hyperkalaemia have also been reported rarely.
Most people tolerate telmisartan well. Side effects are usually minor and either require no treatment or can easily be treated by physician. The most common telmisartan side effects include-Upper respiratory infection such as the common cold or flu up to 7 percent of people, Back pain up to 3 percent of people, Diarrhea up to 3 percent of people, Inflammation of the sinuses up to 3 percent of people.
Toxicity
Symptoms of overdose may include excessive peripheral vasodilation (with marked hypotension and shock), bradycardia, electrolyte disturbances, and renal failure. Cases of ACE inhibitor induced hepatotoxicity have been reported in humans and presented as acute jaundice and elevated liver enzymes. Removal of the ACE inhbitor resulted in a decline in liver enzymes and re-challenge produced a subsequent increase.
There were no observed tumerogenic effects at chronic doses up to 500mg/kg/day to rats for 24 months or at doses up to 1000mg/kg/day to mice for 18 months. For both species doses were administered by gavage and equivalent to 200 time the maximum recommended human exposure based on body surface area.
No mutagenic activity was detected in the Ames test in bacteria, the micronucleus test in mice, unscheduled DNA synthesis in a human cell line, or a forward gene-mutation assay in a Chinese hamster ovary cell line. Several metabolites of ramipril also produced negative results in the Ames test.
No effects on fertility were seen in rats at doses up to 500mg/kg/day. No teratogenicity was observed in rats and cynomolgus monkeys at doses 400 times the maximum recommended human exposure nor in rabbites at 2 times the maximum recommended human exposure.
LD50 10 g/kg (rat). LD50 10.5 g/kg (mouse). LD50 1 g/kg (dog).
Intravenous LD50 in rats is 150-200 mg/kg in males and 200 to 250 mg/kg in females. Acute oral toxicity is low: no deaths and no changes occurred in rats or dogs at 2000 mg/kg, the highest dose tested. Limited data are available with regard to overdosage in humans. The most likely manifestations of overdosage with telmisartan would be hypotension, dizziness and tachycardia; bradycardia could occur from parasympathetic (vagal) stimulation.
Precaution
Ramipril should be used with caution in patients with impaired renal function, hyperkalaemia, hypotension, and impaired hepatic function.
Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Telmisartan may potentially cause extreme low blood pressure or a decrease in kidney function. Hyperkalemia may occur in patients on ARBs, particularly in patients with advanced renal impairment, heart failure, on renal replacement therapy or on potassium supplements, potassium-sparing diuretics, potassium containing salt substitutes or other drugs that increase potassium levels.
Interaction
With Diuretics: Patients on diuretics, especially those in whom diuretic therapy was recently instituted, may occasionally experience an excessive reduction of blood pressure after initiation of therapy with ramipril.
With Potassium Supplements and Potassium-sparing Diuretics: Ramipril can attenuate potassium loss caused by thiazide diuretics. Potassium-sparing diuretics (spironolactone, amiloride, triamterene, and others) or potassium supplements can increase the risk of hyperkalemia.
Other: Neither ramipril nor its metabolites have been found to interact with food, digoxin, antacid, furosemide, cimetidine, indomethacin, and simvastatin. The combination of ramipril and propranolol showed no adverse effects on dynamic parameters (blood pressure and heart rate). The co-administration of ramipril and warfarin did not adversely affect the anticoagulant effects of the latter drug.
When certain medicines are taken together, there is a possibility of developing drug interactions. With Telmisartan, drugs such as potassium supplements or potassium-sparing diuretics may cause an interaction. When Telmisartan was co-administered with digoxin, median increases in digoxin peak plasma concentration (49%) and in through concentration (20%) where observed. Therefore, monitor digoxin levels when initiating, adjusting and discontinuing Telmisartan for the purpose of keeping the digoxin level within the therapeutic range. NSAID use may lead to increase risk of renal impairment and loss of antihypertensive effect. Monitor renal function periodically in patients receiving Telmisartan and NSAID therapy.
Volume of Distribution
- 500 L
Elimination Route
The extent of absorption is at least 50-60%.. Food decreases the rate of absorption from the GI tract without affecting the extent of absorption. The absolute bioavailabilities of ramipril and ramiprilat were 28% and 44%, respectively, when oral administration was compared to intravenous administration. The serum concentration of ramiprilat was unchanged when capsules were opened and the contents dissolved in water, dissolved in apple juice, or suspended in apple sauce.
Absolute bioavailability depends on dosage. Food slightly decreases the bioavailability (a decrease of about 6% is seen when the 40-mg dose is administered with food).
Half Life
Plasma concentrations of ramiprilat decline in a triphasic manner. Initial rapid decline represents distribution into tissues and has a half life of 2-4 hours. The half life of the apparent elimination phase is 9-18 hours, which is thought to represent clearance of free drug. The half-life of the terminal elimination phase is > 50 hours and thought to represent clearance of drug bound to ACE due to its slow dissociation. The half life of ramiprilat after multiple daily doses (MDDs) is dose-dependent, ranging from 13-17 hours with 5-10 mg MDDs to 27-36 hours for 2.5 mg MDDs.
Bi-exponential decay kinetics with a terminal elimination half-life of approximately 24 hours.
Clearance
The renal clearance of ramipril and ramiprilat was reported to be 7.2 and 77.4 mL/min/1.73m2. The mean renal clearance of ramipril and ramiprilat is reported to be 10.7 and 126.8 mL/min in healthy elderly patients with normal renal function, additionally the Cmax of ramiprilat is approximately 20% higher in this population. While the pharmacokinetics of ramipril appear unaffected by reduced renal function, the plasma concentration and half-life of ramiprilat are increased. In patient's with hepatic failure the concentration of ramipril is initially increased while the tmax of ramiprilat is prolonged due to a reduced ability to metabolize the drug. However, steady state concentrations of ramiprilat are the same in hepatic failure as in healthy patients.
- >800 mL/min
Elimination Route
Following oral administration, about 60% of the dose is eliminated in the urine as unchanged ramipril (6
Following either intravenous or oral administration of 14C-labeled telmisartan, most of the administered dose (>97%) was eliminated unchanged in feces via biliary excretion; only minute amounts were found in the urine (0.91% and 0.49% of total radioactivity, respectively).
Pregnancy & Breastfeeding use
If pregnancy is detected, ramipril should be discontinued as early as possible unless continued use is considered life saving. Ramipril should not be used during lactation.
Telmisartan has been assigned to pregnancy categories C (use during first trimester) by the FDA. When pregnancy is detected or expected, Telmisartan should be discontinued as soon as possible. The use of drugs that act directly on the RAA system during the second and third trimesters has been associated with fetal and neonatal injury, including hypotension, neonatal skull hypoplasia, anuria, reversible or irreversible renal failure and death. There are no data on the excretion of Telmisartan into human milk, due to the potential for serious adverse effects in the nursing infant, a decision should be made to discontinue nursing or discontinue the drug.
Contraindication
It is contraindicated in patients who are hypersensitive to any component of this product and in patients with a history of angioedema related to previous treatment with a ACE inhibitor.
Telmisartan is contraindicated in conditions like Pregnancy, Adjunct in treatment of opioid dependence, Dry or painful cough. Telmisartan is also contraindicated in patients with known hypersensitivity to telmisartan.
Special Warning
Dosage in renal impairment: For the patients with hypertension and renal impairment, the recommended initial dose is 1.25 mg Ramipril once daily. Subsequent dosage should be titrated according to individual tolerance and BP response, up to a maximum of 5 mg daily. For the patients with heart failure and renal impairment, the recommended dose is 1.25 mg once daily. The dose may be increased to 1.25 mg twice daily and up to a maximum dose of 2.5 mg twice daily depending upon clinical response and tolerability.
Use in children: No information is yet available on the use of Ramipril in children.
Renal Impairment: Severe impairment or on haemodialysis: Initially, 20 mg once daily.
Hepatic Impairment: Mild to moderate: Max: 40 mg once daily. Severe: Contraindicated.
Acute Overdose
Limited data on human overdosage are available. The most likely clinical manifestations would be symptoms attributable to hypotension. Because the hypotensive effect of Ramipril is achieved through vasodilation and effective hypovolemia, it is reasonable to treat Ramipril overdosage by infusion of normal saline solution.
Symptoms: Hypotension, bradycardia, tachycardia, dizziness, acute renal failure and elevated serum creatinine.
Management: Supportive and symptomatic treatment. Induction of emesis and/or gastric lavage. Activated charcoal may be useful. Salt and volume replacement should be given immediately if hypotension occurs and place patient in supine position.
Storage Condition
Store at cool & dry place, protect from light and moisture.
Store in a cool and dry place, protected from light. Keep out of children’s reach