Telma D Uses, Dosage, Side Effects and more
Telma D Uses, Dosage, Side Effects, Food Interaction and all others data.
Indapamide is a diuretic antihypertensive. It appears to cause vasodilation, probably by inhibiting the passage of calcium and other ions (sodium, potassium) across membranes. It has an extra-renal antihypertensive action resulting in a decrease in vascular hyperreactivity and a reduction in total peripheral and arteriolar resistance.
Classified as a sulfonamide diuretic, indapamide is an effective antihypertensive agent and by extension, has shown efficacy in the prevention of target organ damage.Administration of indapamide produces water and electrolyte loss, with higher doses associated with increased diuresis. Severe and clinically significant electrolyte disturbances may occur with indapamide use - for example, hypokalemia resulting from renal potassium loss may lead to QTc prolongation. Further electrolyte imbalances may occur due to renal excretion of sodium, chloride, and magnesium.
Other indapamide induced changes include increases in plasma renin and aldosterone, and reduced calcium excretion in the urine. In many studies investigating the effects of indapamide in both non-diabetic and diabetic hypertensive patients, glucose tolerance was not significantly altered. However, additional studies are necessary to assess the long term metabolic impacts of indapamide, since thiazide related impaired glucose tolerance can take several years to develop in non-diabetic patients.
Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Telmisartan blocks the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the AT1 receptor in many tissues, such as vascular smooth muscle and the adrenal gland. Its action is therefore independent of the pathways for angiotensin II synthesis.
There is also an AT2 receptor found in many tissues, but AT2 is not known to be associated with cardiovascular homeostasis. Telmisartan has a much greater affinity ( > 3,000 fold) for the AT1 receptor than for the AT2 receptor.
Blockade of the renin-angiotensin system with ACE inhibitors, which inhibit the biosynthesis of angiotensin II from angiotensin I, is widely used in the treatment of hypertension. ACE inhibitors also inhibit the degradation of bradykinin, a reaction also catalyzed by ACE. Because telmisartan does not inhibit ACE (kininase II), it does not affect the response to bradykinin. Whether this difference has clinical relevance is not yet known. Telmisartan does not bind to or block other hormone receptors or ion channels known to be important in cardiovascular regulation.
Blockade of the angiotensin II receptor inhibits the negative regulatory feedback of angiotensin II on renin secretion, but the resulting increased plasma renin activity and angiotensin II circulating levels do not overcome the effect of telmisartan on blood pressure.
Telmisartan is an orally active nonpeptide angiotensin II antagonist that acts on the AT1 receptor subtype. It has the highest affinity for the AT1 receptor among commercially available ARBS and has minimal affinity for the AT2 receptor. New studies suggest that telmisartan may also have PPARγ agonistic properties that could potentially confer beneficial metabolic effects, as PPARγ is a nuclear receptor that regulates specific gene transcription, and whose target genes are involved in the regulation of glucose and lipid metabolism, as well as anti-inflammatory responses. This observation is currently being explored in clinical trials. Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Telmisartan works by blocking the vasoconstrictor and aldosterone secretory effects of angiotensin II.
Trade Name | Telma D |
Generic | Indapamide + Telmisartan |
Weight | 1.5mg |
Type | Tablet |
Therapeutic Class | |
Manufacturer | Glenmark Pharmaceuticals |
Available Country | India |
Last Updated: | January 7, 2025 at 1:49 am |
Uses
Indapamide is used for the treatment of essential hypertension . It is effective in treating hypertension in patients with renal function impairment, although its diuretic effect is reduced. Indapamide is also used for the treatment of salt and fluid retention associated with congestive heart failure.
Telmisartan is an angiotensin II receptor blocker (ARB) used for treatment of hypertension and Cardiovascular (CV) risk reduction in patients who are used for ACE inhibitors.
Telma D is also used to associated treatment for these conditions: High Blood Pressure (Hypertension), Recurrent Nephrolithiasis, Sodium and fluid retentionCardiovascular Events, Diabetic Nephropathy, Heart Failure, High Blood Pressure (Hypertension)
How Telma D works
Indapamide acts on the nephron, specifically at the proximal segment of the distal convoluted tubule where it inhibits the Na+/Cl- cotransporter, leading to reduced sodium reabsorption. As a result, sodium and water are retained in the lumen of the nephron for urinary excretion. The effects that follow include reduced plasma volume, reduced venous return, lower cardiac output, and ultimately decreased blood pressure.
Interestingly, it is likely that thiazide-like diuretics such as indapamide have additional blood pressure lowering mechanisms that are unrelated to diuresis. This is exemplified by the observation that the antihypertensive effects of thiazides are sustained 4-6 weeks after initiation of therapy, despite recovering plasma and extracellular fluid volumes.
Some studies have suggested that indapamide may decrease responsiveness to pressor agents while others have suggested it can decrease peripheral resistance. Although it is clear that diuresis contributes to the antihypertensive effects of indapamide, further studies are needed to investigate the medication’s ability to decrease peripheral vascular resistance and relax vascular smooth muscle.
Telmisartan interferes with the binding of angiotensin II to the angiotensin II AT1-receptor by binding reversibly and selectively to the receptors in vascular smooth muscle and the adrenal gland. As angiotensin II is a vasoconstrictor, which also stimulates the synthesis and release of aldosterone, blockage of its effects results in decreases in systemic vascular resistance. Telmisartan does not inhibit the angiotensin converting enzyme, other hormone receptors, or ion channels. Studies also suggest that telmisartan is a partial agonist of PPARγ, which is an established target for antidiabetic drugs. This suggests that telmisartan can improve carbohydrate and lipid metabolism, as well as control insulin resistance without causing the side effects that are associated with full PPARγ activators.
Dosage
Telma D dosage
One tablet daily preferably in the morning. In more sever case Indapamide can be combine with other categories of anti-hypertensive agent. The safety and effectiveness in pediatric patients have not been established
Hypertension: Dosage must be individualized. The usual starting dose of Telmisartan tablets is 40 mg once a day. Blood pressure response is dose-related over the range of 20 to 80 mg
Most of the antihypertensive effect is apparent within 2 weeks and maximal reduction is generally attained after 4 weeks. When additional blood pressure reduction beyond that achieved with 80 mg Telmisartan is required, adiuretic may be added.
No initial dosage adjustment is necessary for elderly patients or patients with renal impairment, including those on hemodialysis. Patients ondialysismay develop orthostatic hypotension; their blood pressure should be closely monitored.
Cardiovascular Risk Reduction: The recommended dose of Telmisartan tablets is 80 mg once a day and can be administered with or without food. It is not known whether doses lower than 80 mg of telmisartan are effective in reducing the risk of cardiovascular morbidity and mortality.
When initiating Telmisartan therapy for cardiovascular risk reduction, monitoring of blood pressure is recommended, and if appropriate, adjustment of medications that lower blood pressure may be necessary.
Telmisartan tablets may be administered with other antihypertensive agents with or without food.
Side Effects
Side effects of Indapamide include headache, anorexia, gastric irritation,nausea, vomiting, constipation, diarrhoea etc.
Most people tolerate telmisartan well. Side effects are usually minor and either require no treatment or can easily be treated by physician. The most common telmisartan side effects include-Upper respiratory infection such as the common cold or flu up to 7 percent of people, Back pain up to 3 percent of people, Diarrhea up to 3 percent of people, Inflammation of the sinuses up to 3 percent of people.
Toxicity
Indapamide overdose symptoms may include but are not limited to nausea, vomiting, gastrointestinal disorders, electrolyte disturbances and weakness. Other signs of overdose include respiratory depression and severe hypotension. In cases of overdose, supportive care interventions may be necessary to manage symptoms. Emesis and gastric lavage may be recommended to empty the stomach; however, patients should be monitored closely for any electrolyte or fluid imbalances.
Intravenous LD50 in rats is 150-200 mg/kg in males and 200 to 250 mg/kg in females. Acute oral toxicity is low: no deaths and no changes occurred in rats or dogs at 2000 mg/kg, the highest dose tested. Limited data are available with regard to overdosage in humans. The most likely manifestations of overdosage with telmisartan would be hypotension, dizziness and tachycardia; bradycardia could occur from parasympathetic (vagal) stimulation.
Precaution
Monitoring of potassium and uric acid serum levels is recommended, especially in subjects with a predisposition or sensitivity to hypokalemia and in patients with gout. Although no allergic manifestations have been reported during clinical trials, patients with a history of allergy to sulfonamide derivatives should be closely monitored.
Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Telmisartan may potentially cause extreme low blood pressure or a decrease in kidney function. Hyperkalemia may occur in patients on ARBs, particularly in patients with advanced renal impairment, heart failure, on renal replacement therapy or on potassium supplements, potassium-sparing diuretics, potassium containing salt substitutes or other drugs that increase potassium levels.
Interaction
Other antihypertensive: Indapamide may add to or potentiate the action of other antihypertensive drugs.
Norepinephrine: Indapamide like thiazides, may decrease arterial responsiveness to norepinephrine.
Lithium: In general, diuretics should not be given concomitantly with lithium because they reduce its renal clearance and add a high risk of lithium toxicity.
When certain medicines are taken together, there is a possibility of developing drug interactions. With Telmisartan, drugs such as potassium supplements or potassium-sparing diuretics may cause an interaction. When Telmisartan was co-administered with digoxin, median increases in digoxin peak plasma concentration (49%) and in through concentration (20%) where observed. Therefore, monitor digoxin levels when initiating, adjusting and discontinuing Telmisartan for the purpose of keeping the digoxin level within the therapeutic range. NSAID use may lead to increase risk of renal impairment and loss of antihypertensive effect. Monitor renal function periodically in patients receiving Telmisartan and NSAID therapy.
Volume of Distribution
Some sources report an apparent volume of distribution of 25 L for indapamide, while others report a value of approximately 60 L.
- 500 L
Elimination Route
The bioavailability of indapamide is virtually complete after an oral dose and is unaffected by food or antacids. Indapamide is highly lipid-soluble due to its indoline moiety - a characteristic that likely explains why indapamide’s renal clearance makes up less than 10% of its total systemic clearance. The Tmax occurs approximately 2.3 hours after oral administration. The Cmax and AUC0-24 values are 263 ng/mL and 2.95 ug/hr/mL, respectively.
Absolute bioavailability depends on dosage. Food slightly decreases the bioavailability (a decrease of about 6% is seen when the 40-mg dose is administered with food).
Half Life
Indapamide is characterized by biphasic elimination. In healthy subjects, indapamide's elimination half-life can range from 13.9 to 18 hours. The long half-life is conducive to once-daily dosing.
Bi-exponential decay kinetics with a terminal elimination half-life of approximately 24 hours.
Clearance
Indapamide's renal and hepatic clearance values are reported to be 1.71 mL/min and 20-23.4 mL/min, respectively.
- >800 mL/min
Elimination Route
An estimated 60-70% of indapamide is eliminated in the urine, while 16-23% is eliminated in the feces.
Following either intravenous or oral administration of 14C-labeled telmisartan, most of the administered dose (>97%) was eliminated unchanged in feces via biliary excretion; only minute amounts were found in the urine (0.91% and 0.49% of total radioactivity, respectively).
Pregnancy & Breastfeeding use
There are no adequate and well-controlled studies in pregnant women and so Indapamide is not recommended. Mothers taking Indapamide should not breast feed.
Telmisartan has been assigned to pregnancy categories C (use during first trimester) by the FDA. When pregnancy is detected or expected, Telmisartan should be discontinued as soon as possible. The use of drugs that act directly on the RAA system during the second and third trimesters has been associated with fetal and neonatal injury, including hypotension, neonatal skull hypoplasia, anuria, reversible or irreversible renal failure and death. There are no data on the excretion of Telmisartan into human milk, due to the potential for serious adverse effects in the nursing infant, a decision should be made to discontinue nursing or discontinue the drug.
Contraindication
This drug must not be taken in the following conditions:
- Hypersensitivity to sulfonamides
- Severe renal failure
- Hepatic encephalopathy or severe hepatic failure
- Hypokalaemia
Telmisartan is contraindicated in conditions like Pregnancy, Adjunct in treatment of opioid dependence, Dry or painful cough. Telmisartan is also contraindicated in patients with known hypersensitivity to telmisartan.
Special Warning
Renal Impairment: Severe impairment or on haemodialysis: Initially, 20 mg once daily.
Hepatic Impairment: Mild to moderate: Max: 40 mg once daily. Severe: Contraindicated.
Acute Overdose
Symptoms: These could include: allergies, skin rashes, epigastric pain, nausea, photosensitivity, dizziness, weakness and paraesthesia.Treatment: Treatment is supportive and symptomatic, directed at correcting the electrolyte abnormalities.
Symptoms: Hypotension, bradycardia, tachycardia, dizziness, acute renal failure and elevated serum creatinine.
Management: Supportive and symptomatic treatment. Induction of emesis and/or gastric lavage. Activated charcoal may be useful. Salt and volume replacement should be given immediately if hypotension occurs and place patient in supine position.
Storage Condition
Store in a cool and dry place. Protect from light and moisture.
Store in a cool and dry place, protected from light. Keep out of children’s reach