Theraflex Advance

Theraflex Advance Uses, Dosage, Side Effects, Food Interaction and all others data.

Glucosamine is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids. Glucosamine stimulates the production of proteoglycans and increases sulfate uptake by articular cartilage.

The administration of glucosamine, in theory, provides a building block towards the synthesis of glycosaminoglycans, slowing the progression of osteoarthritis and relieving symptoms of joint pain. Studies to this date examining the efficacy of glucosamine sulfate have been inconclusive. Glycosaminoglycans contribute to joint cartilage elasticity, strength, and flexibility. A systematic review of various studies and guidelines determined that modest improvements were reported for joint pain and function in patients taking glucosamine. A consistent joint space narrowing was observed, but with an unclear clinical significance.

Ibuprofen is a non-selective inhibitor of cyclooxygenase, an enzyme invovled in prostaglandin synthesis via the arachidonic acid pathway. Its pharmacological effects are believed to be due to inhibition cylooxygenase-2 (COX-2) which decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever and swelling. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration. Ibuprofen is administered as a racemic mixture. The R-enantiomer undergoes extensive interconversion to the S-enantiomer in vivo. The S-enantiomer is believed to be the more pharmacologically active enantiomer.

Ibuprofen has multiple actions in different inflammatory pathways involved in acute and chronic inflammation. The main effects reported in ibuprofen are related to the control of pain, fever and acute inflammation by the inhibition of the synthesis of prostanoids by COX-1 and COX-2. Pain relief is attributed to peripheral affected regions and central nervous system effects in the pain transmission mediated by the dorsal horn and higher spinothalamic tract. Some reports have tried to link the pain regulation with a possible enhancement on the synthesis of endogenous cannabinoids and action on the NMDA receptors. The effect on pain has been shown to be related to the cortically evoked potentials.

The antipyretic effect is reported to be linked to the effect on the prostanoid synthesis due to the fact that the prostanoids are the main signaling mediator of pyresis in the hypothalamic-preoptic region.

The use of ibuprofen in dental procedures is attributed to the local inhibition of prostanoid production as well as to anti-oedemic activity and an increase of plasma beta-endorphins. Some reports have suggested a rapid local reduction of the expression of COX-2 in dental pulp derived by the administration of ibuprofen.

Trade Name Theraflex Advance
Generic Chondroitin + Glucosamine + Ibuprofen
Type
Therapeutic Class
Manufacturer
Available Country Russia
Last Updated: September 19, 2023 at 7:00 am
Theraflex Advance
Theraflex Advance

Uses

Indicated for the treatment of osteoarthritis of knee, hip, spine, and other locations. Also used as dietary supplement

Ibuprofen is used

  • For the treatment of sign and symptoms of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis and other non-rheumatoid arthropathies,
  • For the treatment of non-articular rheumatic conditions, such as frozen shoulder, bursitis, tendinitis, tenosynovitis and low back pain,
  • For the treatment of soft tissue injuries such as sprain, strain and post operative pain
  • For the treatment of dysmenorrhoea,
  • For the treatment of dental pain.
  • For the treatment of cold & fever.

Theraflex Advance is also used to associated treatment for these conditions: Arthritis, Backache, Joint Pain, Osteoarthritis (OA), Osteoarthritis of the KneeAnkylosing Spondylitis (AS), Common Cold, Cystic Fibrosis (CF), Fever, Gastric Ulcer, Gouty Arthritis, Headache, Insomnia, Juvenile Idiopathic Arthritis (JIA), Menstrual Distress (Dysmenorrhea), Migraine, Mild pain, Nasal Congestion, Osteoarthritis (OA), Pain, Pain, Acute, Pain, Inflammatory, Patent Ductus Arteriosus (PDA), Pericarditis, Primary Dysmenorrhoea, Rheumatoid Arthritis, Severe Pain, Sinus pressure, Mild to moderate pain, Minor aches and pains, Moderate Pain

How Theraflex Advance works

The mechanism of action of glucosamine in joint health is unclear, however there are several possible mechanisms that contribute to its therapeutic effects. Because glucosamine is a precursor for glycosaminoglycans, and glycosaminoglycans are a major component of joint cartilage, glucosamine supplements may help to rebuild cartilage and treat the symptoms of arthritis. Some in vitro studies show evidence that glucosamine reduces inflammation via inhibition of interferon gamma and Nuclear factor kappa B subunit 65 (NF-κB p65), improving the symptoms of arthritis and joint pain. Clinical relevance is unknown at this time.

The exact mechanism of action of ibuprofen is unknown. However, ibuprofen is considered an NSAID and thus it is a non-selective inhibitor of cyclooxygenase, which is an enzyme involved in prostaglandin (mediators of pain and fever) and thromboxane (stimulators of blood clotting) synthesis via the arachidonic acid pathway.

Ibuprofen is a non-selective COX inhibitor and hence, it inhibits the activity of both COX-1 and COX-2. The inhibition of COX-2 activity decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever, and swelling while the inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration.

Dosage

Theraflex Advance dosage

500 mg tablet three times daily or as directed by the physician. A single dose of 1500 mg daily may also be effective. Obese individuals may need higher doses, based on body weight.

Oral Administrations-

For Children:

  • 20 mg per kg body weight daily in divided doses. In children weighing less than 30 kg the total daily dosage should not exceed 500 mg. If gastrointestinal disturbances occur Ibuprofenshould be given with food or milk.
  • 1-2 years: 1/2 tea spoonful (2.5 ml) 3-4 times daily;
  • 3-7 years: 1 tea spoonful (5 ml) 3-4 times daily;
  • 8-12 years: 2 tea spoonful (10 ml) 3-4 times daily. Ibuprofenis not recommended for children under 1 year.

For adult:

  • For arthritic pain: The dosage range is from 0.9 to 2.4 g per day. The usual dose is 400 mg, 3-4 times per day, preferably after food. The dose may be raised to a maximum of 2.4 g daily depending on the severity of symptom at the time of initiating drug therapy or as patients fail to respond. After a satisfactory response has been achieved the patients dose should be reviewed and adjusted as required and tapered gradually.
  • For mild to moderate pain: 400 mg 6 hourly or as demanded by the condition.
  • For dysmenorrhoea: 400 mg every 4 hours or as demanded by the condition.

Topical Administrations-

Pain and inflammation associated with musculoskeletal and joint disorder: As 5% cream, foam, gel, spray soln or 10% gel: Apply onto affected area.

Side Effects

Safety studies with Glucosamine show no demonstrable toxicity. Rarely occurring side effects like mild & reversible intestinal flatulence are almost like placebo.

Usually Ibuprofen has a low incidence of side effects. The most frequent side effects are gastrointestinal disturbances. Peptic ulceration and gastrointestinal bleeding have occasionally been reported. Other side effects include headache, dizziness, nervousness, skin rash, pruritus, drowsiness, insomnia, blurred vision and other ocular reactions, hypersensitivity reaction, abnormal liver function test, impairment of renal function, agranulocytosis and thrombocytopenia.

Toxicity

The oral LD50 of glucosamine in rats is >5000 mg/kg. Symptoms of an overdose with glucosamine may include nausea, vomiting, abdominal pain, and diarrhea (common side effects of this drug). Severe and life-threatening hypersensitivity reactions to glucosamine may occur in patients with a shellfish allergy or asthma.

The symptoms of overdose are presented in individuals that consumed more than 99 mg/kg. Most common symptoms of overdose are abdominal pain, nausea, vomiting, lethargy, vertigo, drowsiness (somnolence), dizziness and insomnia. Other symptoms of overdose include headache, loss of consciousness, tinnitus, CNS depression, convulsions and seizures. May rarely cause metabolic acidosis, abnormal hepatic function, hyperkalemia, renal failure, dyspnea, respiratory depression, coma, acute renal failure, and apnea (primarily in very young pediatric patients).

The reported LD50 of ibuprofen is of 636 mg/kg in rat, 740 mg/kg in mouse and 495 mg/kg in guinea pig.

Precaution

Diabetics are advised to monitor blood glucose levels regularly while taking Glucosamine. No special studies were formed in patients with renal and/or hepatic insufficiency. The toxicological and pharmacokinetic profile of the product does not indicate limitations for these patients. However, administration to these patients with severe hepatic or renal insufficiency should be under appropriate medical supervision.

Ibuprofen should be given with caution to patients with bleeding disorders, cardiovascular diseases, peptic ulceration or a history of such ulceration and in those who are receiving coumarin anticoagulants and in patients with renal or hepatic impairment.

Interaction

There have been no reports of significant drug interactions ofGlucosamine with antibiotics, antidepressants, antihypertensives, nitrates, antiarrhythmics, anxiolytic, hypoglycaemic agents, anti-secretives.

Increased risk of GI bleeding with warfarin, corticosteroids, SSRIs and aspirin. May reduce the natriuretic effects of diuretics. Reduced antihypertensive effect of ACE inhibitors and angiotensin II receptor antagonists. May increase toxicity of lithium and methotrexate. Increased nephrotoxicity with ciclosporin and tacrolimus.

Volume of Distribution

Results of a pharmacokinetic study of 12 healthy volunteers receiving three daily consecutive oral administrations of glucosamine sulfate soluble powder demonstrated glucosamine distribution to extravascular compartments. Human pharmacokinetic data for glucosamine is limited in the literature, however, a large animal model study of horses revealed a mean apparent volume of distribution of 15.4 L/kg. Concentrations of glucosamine ranged from 9-15 microM after an intravenous dose, and 0.3-0.7 microM after nasogastric dosing. These concentrations remained in the range of 0.1-0.7 microM in the majority of horses 12 hours after dosing, suggesting effectiveness of a once-daily dose. In rats and dogs, radioactivity from a C-14 labeled dose of glucosamine is detected in the liver, kidneys, articular cartilage, and other areas.

The apparent volume of distribution of ibuprofen is of 0.1 L/kg.

Elimination Route

In a pharmacokinetic study, glucosamine was 88.7% absorption by the gastrointestinal tract. Absolute oral bioavailability was 44%, likely due to the hepatic first-pass effect. In a pharmacokinetic study of 12 healthy adults receiving oral crystalline glucosamine, plasma levels increased up to 30 times the baseline levels and Cmax was 10 microM with a 1,500 mg once-daily dose. Tmax was about 3 hours. AUC was 20,216 ± 5021 after a 15,000 mg dose.

It is very well absorbed orally and the peak serum concentration can be attained in 1 to 2 hours after extravascular administration. When ibuprofen is administered immediately after a meal there is a slight reduction in the absorption rate but there is no change in the extent of the absorption.

When orally administered, the absorption of ibuprofen in adults is very rapidly done in the upper GI tract. The average Cmax, Tmax and AUC ranges around 20 mcg/ml, 2 h and 70 mcg.h/ml. These parameters can vary depending on the enantiomer form, route, and dose of administration.

Half Life

The estimated half-life for glucosamine is 15 hours after an oral dose. After a bolus intravenous injection of 1005 mg crystalline glucosamine sulfate, the parent drug has an apparent half life of 1.11 hours.

The serum half-life of ibuprofen is 1.2-2 hours. In patients with a compromised liver function, the half-life can be prolonged to 3.1-3.4 hours.

Clearance

The clearance rate ranges between 3-13 L/h depending on the route of administration, enantiomer type and dosage.

Elimination Route

Fecal excretion of glucosamine in a pharmacokinetic study was 11.3% within 120 hours after administration. Urinary elimination was found to be 1.19% within the first 8 hours post-administration.

Ibuprofen is rapidly metabolized and eliminated in the urine thus, this via accounts for more than 90% of the administered dose. It is completely eliminated in 24 hours after the last dose and almost all the administered dose goes through metabolism, representing about 99% of the eliminated dose. The biliary excretion of unchanged drug and active phase II metabolites represents 1% of the administered dose.

In summary, ibuprofen is excreted as metabolites or their conjugates. The elimination of ibuprofen is not impaired by old age or the presence of renal impairment.

Pregnancy & Breastfeeding use

Women who are pregnant or who could become pregnant should not supplement with glucosamine. Glucosamine has not been studied enough to determine their effects on a developing fetus. And no studies have evaluated the use of Glucosamine during pregnancy or lactation. It should be taken with caution and medical advice during pregnancy and lactation.

Ibuprofen is not recommended during pregnancy or for use in nursing mothers.

Contraindication

There are no known contraindications for Glucosamine. But proven hypersensitivity to Glucosamine is a contraindication.

Ibuprofen should not be given to patients with hypersensitivity to lbuprofen and to individuals who show nasal polyps, angioedema, bronchospastic reactivity to aspirin or other non-steroidal anti-inflammatory drug. Ibuprofen is contraindicated in patients with active or previous peptic ulceration & gastro-intestinal ulceration or bleeding.

Acute Overdose

Gastric lavage, correction of blood electrolytes (if necessary). There is no specific antidote for Ibuprofen

Storage Condition

Should be stored in cool and dry place.

Keep in a cool & dry place. Keep out of the reach of children.

Innovators Monograph

You find simplified version here Theraflex Advance


*** Taking medicines without doctor's advice can cause long-term problems.
Share