Trance Uses, Dosage, Side Effects and more
Dexamethasone is a synthetic glucocorticoid which decreases inflammation by inhibiting the migration of leukocytes and reversal of increased capillary permeability. It suppresses normal immune response.
Corticosteroids bind to the glucocorticoid receptor, inhibiting pro-inflammatory signals, and promoting anti-inflammatory signals. Dexamethasone's duration of action varies depending on the route. Corticosteroids have a wide therapeutic window as patients may require doses that are multiples of what the body naturally produces. Patients taking corticosteroids should be counselled regarding the risk of hypothalamic-pituitary-adrenal axis suppression and increased susceptibility to infections.
Tobramycin interferes with bacterial protein synthesis by binding to 30S and 50S ribosomal subunits, resulting in a defective bacterial cell membrane.
Tobramycin is an aminoglycoside antibiotic derived from the actinomycete Streptomyces tenebrarius. It has a broad spectrum of activity against Gram-negative bacteria, including Enterobacteriaceae, Escherichia coli, Klebsiella pneumoniae, Morganella morganii, Moraxella lacunata, Proteus spp., Haemophilus spp., Acinetobacter spp., Neisseria spp., and, importantly, Pseudomonas aeruginosa. Aminoglycosides also generally retain activity against the biothreat agents Yersinia pestis and Francisella tularensis. In addition, aminoglycosides are active against some Gram-positive bacteria such as Staphylococcus spp., including methicillin-resistant (MRSA) and vancomycin-resistant strains, Streptococcus spp., and Mycobacterium spp.
Like other aminoglycosides, tobramycin is taken up and retained by proximal tubule and cochlear cells in the kidney and ear, respectively, and hence carries a risk of nephrotoxicity and ototoxicity. There is also a risk of neuromuscular block, which may be more pronounced in patients with preexisting neuromuscular disorders such as myasthenia gravis or Parkinson's disease. Aminoglycosides can cross the placenta, resulting in total, irreversible, bilateral congenital deafness in babies born to mothers who were administered an aminoglycoside during pregnancy. Due to the low systemic absorption of inhaled and topical tobramycin formulations, these effects are more pronounced with injected tobramycin than with other formulations. However, all formulations carry a risk of hypersensitivity reactions, including potentially fatal cutaneous reactions such as Stevens-Johnson syndrome and toxic epidermal necrolysis.
Trade Name | Trance |
Generic | Dexamethasone + Polymyxin B (Sulphate) + Tobramycin |
Weight | 0.1%w/v, 0.3%w/v |
Type | Eye Drops |
Therapeutic Class | |
Manufacturer | Innvotek Pharmaceuticals |
Available Country | Pakistan |
Last Updated: | January 7, 2025 at 1:49 am |
Uses
Endocrine disorders: Primary or secondary adrenocortical insufficiency (hydrocortisone or cortisone is the drug of choice; synthetic analogs may be used in conjunction with mineralocorticoids where applicable; in infancy, mineralocorticoid supplementation is of particular importance). Acute adrenocortical insufficiency, pre operatively and in the event of serious trauma or illness, in patients with known adrenal insufficiency or when adrenocortical reserve is doubtful. Shock unresponsive to conventional therapy if adrenocortical insufficiency exists or is suspected congenital adrenal hyperplasia, nonsuppurative thyroiditis, hypercalcemia associated with cancer
Rheumatic disorders: As adjunctive therapy for short-term administration (to tide the patient over an acute episode or exacerbation) in: post-traumatic osteoarthritis, synovitis of osteoarthritis, rheumatoid arthritis including juvenile rheumatoid arthritis (selected cases may require low-dose maintenance therapy), acute and sub-acute bursitis, epicondylitis, acute nonspecific tenosynovitis, acute gouty arthritis, psoriatic arthritis, ankylosing spondylitis.
Collagen diseases: During an exacerbation or as maintenance therapy in selected cases of Systemic lupus erythematosus and acute rheumatic carditis
Dermatologic diseases: Pemphigus,Severe erythema multiforme (Stevens-Johnson syndrome), Exfoliative dermatitis, Bullous dermatitis herpetiformis, Severe seborrheic dermatitis,Severe psoriasis, Mycosis fungoides
Allergic states: Control of severe or incapacitating allergic conditions intractable to adequate trials of conventional treatment in bronchial asthma, contact dermatitis, atopic dermatitis, serum sickness, seasonal or perennial allergic rhinitis, drug hypersensitivity reactions, urticarial transfusion reactions, acute non-infectious laryngeal edema (epinephrine is the drug of first choice)
Ophthalmic diseases: Severe acute and chronic allergic and inflammatory processes involving the eye, such as: herpes zoster ophthalmicus, iritis, iridocyclitis, chorioretinitis, diffuse posterior uveitis and choroiditis, optic neuritis, sympathetic ophthalmia, anterior segment inflammation, allergic conjunctivitis, keratitis, allergic corneal marginal ulcers.
Gastrointestinal diseases: To tide the patient over a critical period of the disease in ulcerative colitis (systemic therapy), regional enteritis (systemic therapy) Respiratory diseases Symptomatic sarcoidosis, berylliosis, fulminating or disseminated pulmonary tuberculosis when used concurrently with appropriate anti-tuberculous chemotherapy, Loeffler's syndrome not manageable by other means, aspiration pneumonitis.
Hematologic disorders: Acquired (autoimmune) hemolytic anemia, idiopathic thrombocytopenic purpura in adults (I.V. only: I.M administration is contraused), secondary thrombocytopenia in adults, erythroblastopenia (RBC anemia), congenital (erythroid) hypoplasticanemia
Neoplastic diseases: For palliative management of leukemias and lymphomas in adults, acute leukemia of childhood.
Edematous states: To induce diuresis or remission of proteinuria in the nephrotic syndrome, without uremia, of the idiopathic type or that due to lupus erythematosus.
Miscellaneous: Tuberculous meningitis with subarachnoid block or impending block when used concurrently with appropriate antituberculous chemotherapy,Trichinosis with neurologic or myocardial involvement
Cerebral Edema: Cerebral Edema associated with primary or metastatic brain tumor, craniotomy, or head injury. Use in cerebral edema is not a substitute for careful neurosurgical evaluation and definitive management such as neurosurgery or other specific therapy.May also be useful in cystic tumors of an aponeurosis or tendon (ganglia).
Tobramycin Respirator Solution is used for the management of cystic fibrosis patients with Pseudomonas aeruginosa. Also used for severe COPD patients colonized with Pseudomonas aeruginosa. Safety and efficacy have not been demonstrated in patients below the age of 6 years, patients with a forced expiratory volume <25% or >75% predicted, or patients colonized with Burkholderia cepacia.
For the treatment of external infections of the eye and its adnexa caused by susceptible bacteria. Appropriate monitoring of bacterial response to topical antibiotic therapy should accompany its use.
Trance is also used to associated treatment for these conditions: Acne Rosacea, Acute Gouty Arthritis, Acute Otitis Externa, Acute Otitis Media, Adrenal cortical hypofunctions, Adrenocortical Hyperfunction, Alopecia Areata (AA), Ankylosing Spondylitis (AS), Anterior Segment Inflammation, Aspiration Pneumonitis, Asthma, Atopic Dermatitis (AD), Berylliosis, Bullous dermatitis herpetiformis, Bursitis, Chorioretinitis, Choroiditis, Congenital Adrenal Hyperplasia (CAH), Congenital Hypoplastic Anemia, Conjunctivitis, Conjunctivitis allergic, Corneal Inflammation, Cushing's Syndrome, Dermatitis, Dermatitis exfoliative generalised, Dermatitis, Contact, Diabetic Macular Edema (DME), Discoid Lupus Erythematosus (DLE), Drug hypersensitivity reaction, Edema of the cerebrum, Epicondylitis, Episcleritis, Erythroblastopenia, Eye Infections, Eye allergy, Eye swelling, Glaucoma, Hypercalcemia, Idiopathic Thrombocytopenic Purpura, Infection, Inflammation, Inflammation of the External Auditory Canal, Intraocular Inflammation, Iridocyclitis, Iritis, Keloid Scars, Leukemia, Acute, Lichen Planus (LP), Lichen simplex chronicus, Loeffler's syndrome, Macular Edema, Malignant Lymphomas, Middle ear inflammation, Mucosal Inflammation of the eye, Multiple Myeloma (MM), Muscle Inflammation caused by Cataract Surgery of the eye, Mycosis Fungoides (MF), Necrobiosis lipoidica diabeticorum, Noninfectious Posterior Uveitis, Ocular Infections, Irritations and Inflammations, Ocular Inflammation, Ocular Inflammation and Pain, Ocular Irritation, Ophthalmia, Sympathetic, Optic Neuritis, Otitis Externa, Pemphigus, Perennial Allergic Rhinitis (PAR), Phlyctenular keratoconjunctivitis, Post-traumatic Osteoarthritis, Postoperative Infections of the eyes caused by susceptible bacteria, Regional Enteritis, Rheumatoid Arthritis, Rheumatoid Arthritis, Juvenile, Sarcoidosis, Scleritis, Seasonal Allergic Conjunctivitis, Seasonal Allergic Rhinitis, Secondary thrombocytopenia, Serum Sickness, Severe Seborrheic Dermatitis, Stevens-Johnson Syndrome, Synovitis, Systemic Lupus Erythematosus (SLE), Trichinosis, Tuberculosis (TB), Tuberculosis Meningitis, Ulcerative Colitis, Uveitis, Vernal Keratoconjunctivitis, Acquired immune hemolytic anemia, Acute nonspecific tenosynovitis, Acute rheumatic carditis, Corticosteroid-responsive dermatoses, Ear infection-not otherwise specified caused by susceptible bacteria, Granuloma annulare lesions, Non-suppurative Thyroiditis, Ocular bacterial infections, Severe Psoriasis, Steroid-responsive inflammation of the eye, Varicella-zoster virus acute retinal necrosis, Watery itchy eyesBacterial Peritonitis, Bone Infection, Cystic fibrosis, Pseudomonas aeruginosa infection, Eye Infections, Inflammation of the External Auditory Canal, Intra-Abdominal Infections, Lower respiratory tract infection bacterial, Meningitis, Bacterial, Ocular Inflammation, Septicemia gram-negative, Skin and Subcutaneous Tissue Bacterial Infections, Corticosteroid-responsive Disorder of the Ophthalmic, Ear infection-not otherwise specified caused by susceptible bacteria, Ocular bacterial infections, Recurrent Complicated Urinary Tract Infection, Steroid-responsive inflammation
How Trance works
The short term effects of corticosteroids are decreased vasodilation and permeability of capillaries, as well as decreased leukocyte migration to sites of inflammation. Corticosteroids binding to the glucocorticoid receptor mediates changes in gene expression that lead to multiple downstream effects over hours to days.
Glucocorticoids inhibit neutrophil apoptosis and demargination; they inhibit phospholipase A2, which decreases the formation of arachidonic acid derivatives; they inhibit NF-Kappa B and other inflammatory transcription factors; they promote anti-inflammatory genes like interleukin-10.
Lower doses of corticosteroids provide an anti-inflammatory effect, while higher doses are immunosuppressive. High doses of glucocorticoids for an extended period bind to the mineralocorticoid receptor, raising sodium levels and decreasing potassium levels.
Tobramycin is a 4,6-disubstituted 2-deoxystreptamine (DOS) ring-containing aminoglycoside antibiotic with activity against various Gram-negative and some Gram-positive bacteria. The mechanism of action of tobramycin has not been unambiguously elucidated, and some insights into its mechanism rely on results using similar aminoglycosides. In general, like other aminoglycosides, tobramycin is bactericidal and exhibits both immediate and delayed killing, which are attributed to different mechanisms, as outlined below.
Aminoglycosides are polycationic at physiological pH, such that they readily bind to bacterial membranes ("ionic binding"); this includes binding to lipopolysaccharide and phospholipids within the outer membrane of Gram-negative bacteria and to teichoic acid and phospholipids within the cell membrane of Gram-positive bacteria. This binding displaces divalent cations and increases membrane permeability, which allows aminoglycoside entry. Additional aminoglycoside entry ("energy-dependent phase I") into the cytoplasm requires the proton-motive force, allowing access of the aminoglycoside to its primary intracellular target of the bacterial 30S ribosome. Mistranslated proteins produced as a result of aminoglycoside binding to the ribosome (see below) integrate into and disrupt the cell membrane, which allows more of the aminoglycoside into the cell ("energy-dependent phase II"). Hence, tobramycin and other aminoglycosides have both immediate bactericidal effects through membrane disruption and delayed bactericidal effects through impaired protein synthesis; observed experimental data and mathematical modelling support this two-mechanism model.
Inhibition of protein synthesis was the first recognized effect of aminoglycoside antibiotics. Structural and cell biological studies suggest that aminoglycosides bind to the 16S rRNA in helix 44 (h44), near the A site of the 30S ribosomal subunit, altering interactions between h44 and h45. This binding also displaces two important residues, A1492 and A1493, from h44, mimicking normal conformational changes that occur with successful codon-anticodon pairing in the A site. Overall, aminoglycoside binding has several negative effects, including inhibiting translation initiation and elongation and ribosome recycling. Recent evidence suggests that the latter effect is due to a cryptic second binding site situated in h69 of the 23S rRNA of the 50S ribosomal subunit. Also, by stabilizing a conformation that mimics correct codon-anticodon pairing, aminoglycosides promote error-prone translation; mistranslated proteins can incorporate into the cell membrane, inducing the damage discussed above.
Although direct mutation of the 16S rRNA is a rare resistance mechanism, due to the gene being present in numerous copies, posttranscriptional 16S rRNA modification by 16S rRNA methyltransferases (16S-RMTases) at the N7 position of G1405 or the N1 position of A1408 are common resistance mechanisms in aminoglycoside-resistant bacteria. These mutants also further support the proposed mechanism of action of aminoglycosides. Direct modification of the aminoglycoside itself through acetylation, adenylation, and phosphorylation by aminoglycoside-modifying enzymes (AMEs) are also commonly encountered resistance mutations. Finally, due to the requirement for active transport of aminoglycosides across bacterial membranes, they are not active against obligately anaerobic bacteria.
Dosage
Trance dosage
Intraarticular-
Inflammatory joint diseases:
- Adult: 0.8-4 mg depending on the size of the affected joint. For soft-tissue inj, 2-6 mg may be used. May repeat inj every 3-5 days to every 2-3 wk.
Intravenous-
Prophylaxis of nausea and vomiting associated with cytotoxic therapy:
- Adult: Prevention: 10-20 mg 15-30 minutes before admin of chemotherapy on each treatment day. For continuous infusion regimen: 10 mg every 12 hr on each treatment day. For midly emetogenic regimen: 4 mg every 4-6 hr.
Unresponsive shock:
- Adult: As phosphate: Initially, 40 mg or 1-6 mg/kg as a single IV inj, may repeat every 2-6 hr. Continue high-dose treatment only until patient's condition has stabilised and not to be continued beyond 48-72 hr.
Bacterial meningitis:
- Adult: 0.15 mg/kg 4 times daily, to be given 10-20 min before or with the 1st dose of anti-infective treatment. Treatment should be given for the first 2-4 days of the anti-infective treatment.
- Child: As phosphate: 2 mth-18 yr: 150 mcg/kg every 6 hr for 4 days, starting before or with 1st dose of antibacterial treatment.
Cerebral oedema caused by malignancy:
- Adult: As phosphate: 10 mg IV followed by 4 mg IM every 6 hr until response is achieved, usually after 12-24 hr. May reduce dosage after 2-4 days then gradually discontinued over 5-7 days. In severe cases, an initial dose of 50 mg IV may be given on day 1, with 8 mg every 2 hr, reduced gradually over 7-13 days. Maintenance dose: 2 mg 2-3 times daily.
- Child: As phosphate: 35 kg: Initially 25 mg, then 4 mg every 2 hr for 3 days, then 4 mg every 4 hr for 1 day, then 4 mg every 6 hr for 4 days, then decrease by 2 mg daily. Doses are given via IV inj.
Oral-
Anti-inflammatory:
- Adult: 0.75-9 mg daily in 2-4 divided doses; may also be given via IM/IV admin.
- Child: 1 mth-18 yr: 10-100 mcg/kg daily in 1-2 divided doses via oral admin, adjusted according to response; up to 300 micrograms/kg daily may be used in emergency situations.
Screening test for Cushing's syndrome:
- Adult: 0.5 mg every 6 hr for 48 hr after determining baseline 24-hr urinary 17-hydroxycorticosteroid (17-OHCS) concentrations. During the second 24 hr of dexamethasone admin, urine is collected and analysed for 17-OHCS. Alternatively, after a baseline plasma cortisol determination, 1 mg may be given at 11 pm and plasma cortisol determined at 8 am the next morning. Plasma cortisol and urinary output of 17-OHCS are depressed after dexamethasone admin in normal individuals but remain at basal levels in patients with Cushing's syndrome.
Acute exacerbations in multiple sclerosis:
- Adult: 30 mg daily for 1 wk followed by 4-12 mg daily for 1 mth.
- Child: 1 mth-12 yr: 100-400 mcg/kg daily in 1-2 divided doses; 12-18 yr: Initially 0.5-24 mg daily. Max. 24 mg daily.
Tobramycin (Respirator Solution) The recommended dosage for, both adult and paediatric patients, 6 years of age and older, is one single-use ampoule (300 mg) administered b.i.d for 28 days. Dosage is not adjusted by weight.
The doses should be taken as close to 12 hours apart as possible; they should not be taken less than 6 hours apart.
If you are taking several medications, the recommended order is as follows: bronchodilator first, followed by chest physiotherapy, then other inhaled medications and finally Tobramycin.
You should take Tobramycin in repeated cycles of 28 days on drug, followed by 28 days off drug. You should take Tobramycin twice a day during the 28 day period on drug.
Tobramycin Eye Drops: In mild to moderate disease, 1 drop into the affected eye(s) every 4 hours. In severe infections, 1 drop into the affected eye(s) hourly until improvement, following which dosage should be reduced prior to discontinuation.
Tobramycin Eye Ointment: In mild to moderate disease it should be applied thinly and evenly into the conjunctival sac of the affected eyes 2 to 3 times per day. For severe cases it should be applied thinly and evenly into the conjunctival sac of the affected eyes 3 to 4 times per day. Following improvement, treatment should be reduced prior to discontinuation.
Side Effects
Dexamethasone is generally well tolerated in standard low doses, Nausea, vomiting, increased appetite, and obesity may occur. Higher doses may result behavioral personality changes. Following adverse reactions have been associate with prolonged systemic glucocorticoid therapy, endocrine & metabolic disturbances, fluid & electrolyte disturbances, musculo-skeletal effects like osteoporosis etc; GI effects like ulcer, bleeding, perforation; Opthelmic effects like Glaucoma, increased intraocular pressure etc; immunosuppressive effects like increased susceptibility to infection etc.
Inhaled Tobramycin is generally well-tolerated. Voice alterations and tinnitus are more common in the on-drug periods. However all the episodes are transient and resolved without discontinuation of the regimen. Others like dizziness and increase in serum creatinine were similar to those occurring with placebo.
The most frequent adverse reactions to Tobramycin are localized ocular toxicity and hypersensitivity, including lid itching and swelling and conjunctival erythema. These reactions occur in less than 3% of patients treated.
Toxicity
The oral LD50 in female mice was 6.5g/kg and 794mg/kg via the intravenous route.
Overdoses are not expected with otic formulations. Chronic high doses of glucocorticoids can lead to the development of cataract, glaucoma, hypertension, water retention, hyperlipidemia, peptic ulcer, pancreatitis, myopathy, osteoporosis, mood changes, psychosis, dermal atrophy, allergy, acne, hypertrichosis, immune suppression, decreased resistance to infection, moon face, hyperglycemia, hypocalcemia, hypophosphatemia, metabolic acidosis, growth suppression, and secondary adrenal insufficiency. Overdose may be treated by adjusting the dose or stopping the corticosteroid as well as initiating symptomatic and supportive treatment.
Toxicity information regarding tobramycin is not readily available. Patients experiencing an overdose are at an increased risk of severe adverse effects such as nephrotoxicity, ototoxicity, neuromuscular blockade, and respiratory failure/paralysis. Symptomatic and supportive measures are recommended; hemodialysis may help clear excess tobramycin. Accidental ingestion of tobramycin is unlikely to result in an overdose, as aminoglycosides are poorly absorbed in the gastrointestinal tract.
Poor gastrointestinal absorption is reflected in animal studies. When administered by the intraperitoneal or subcutaneous route, the LD50 for mice and rats ranges from 367-1030 mg/kg while the oral LD50 values are more than 7500 mg/kg.
Precaution
The lowest possible dose of corticosteroids should be used to control the conditions under treatment. Dexamethasone should be used with caution in patient with cardiomyopathy, heart failure, hypertension, or renal insufficiency, drug induced secondary adrenocortical insufficiency, peptic ulcer, diverticulitis, intestinal anastomosis, ulcerative colitis, osteoporosis, & latent tuberculosis etc.
As with other anti-infective, prolonged use may result in overgrowth of non-susceptible organisms, including fungi. If super-infection occurs, discontinue use and institute alternative therapy. Patients should be advised not to wear contact lenses if they have signs and symptoms of bacterial conjunctivitis.
Warning: Do not touch the dropper or tube opening to any surface, including eyes or hands. The dropper or tube opening is sterile. If it becomes contaminated, it could cause an infection in the eye. Use caution when driving, operating machinery, or performing other hazardous activities. Tobramycin ophthalmic may cause blurred vision. If blurred vision is experienced, avoid these activities. Caution should be taken to wear the contact lenses. After applying the medication, wait at least 15 minutes before inserting contact lenses, unless otherwise directed by doctor. Do not use other eye drops or medications during treatment with tobramycin ophthalmic unless otherwise directed by doctor
Interaction
Drug interaction can be occurred with following drugs:Diuretics, cardiac glycosides, antidiabetics, NSAIDs, anticoagulants, antacids etc. Besides, if patients undergo long-term therapy of glucororticoids with concomitant salicylates, any reduction in glucocorticoid dosage should be made with caution, since salicylate intoxication has been reported in such cases.
Patients taking Tobramycin concomitantly with beta agonists, inhaled corticosteroids, other anti pseudomonal antibiotics or parenteral aminoglycosides demonstrated adverse experience profiles.
Specific drug interaction studies on Tobramycin ophthalmic preparation have not been established
Volume of Distribution
A 1.5mg oral dose of dexamethasone has a volume of distribution of 51.0L, while a 3mg intramuscular dose has a volume of distribution of 96.0L.
Inhalation tobramycin had an apparent volume of distribution in the central compartment of 85.1 L for a typical cystic fibrosis patient.
Elimination Route
Absorption via the intramuscular route is slower than via the intravenous route. A 3mg intramuscular dose reaches a Cmax of 34.6±6.0ng/mL with a Tmax of 2.0±1.2h and an AUC of 113±38ng*h/mL. A 1.5mg oral dose reaches a Cmax of 13.9±6.8ng/mL with a Tmax of 2.0±0.5h and an AUC of 331±50ng*h/mL. Oral dexamethasone is approximately 70-78% bioavailable in healthy subjects.
Tobramycin administered by inhalation in cystic fibrosis patients showed greater variability in sputum as compared to serum. After a single 112 mg dose, the serum Cmax was 1.02 ± 0.53 μg/mL, which was reached in one hour (Tmax), while the sputum Cmax was 1048 ± 1080 μg/g. Comparatively, for a 300 mg dose, the serum Cmax was 1.04 ± 0.58 μg/mL, which was also reached within one hour, while the sputum Cmax was 737 ± 1028 μg/g. The systemic exposure (AUC0-12) was also similar between the two doses, at 4.6 ± 2.0 μg∙h/mL for the 112 mg dose and 4.8 ± 2.5 μg∙h/mL for the 300 mg dose. When tobramycin was administered over a four-week cycle at 112 mg twice daily, the Cmax measured one hour after dosing ranged from 1.48 ± 0.69 μg/mL to 1.99 ± 0.59 μg/mL.
Half Life
The mean terminal half life of a 20mg oral tablet is 4 hours. A 1.5mg oral dose of dexamethasone has a half life of 6.6±4.3h, while a 3mg intramuscular dose has a half life of 4.2±1.2h.
Tobramycin has an apparent serum terminal half-life of ~3 hours following a single 112 mg inhaled dose in cystic fibrosis patients.
Clearance
A 20mg oral tablet has a clearance of 15.7L/h. A 1.5mg oral dose of dexamethasone has a clearance of 15.6±4.9L/h while a 3.0mg intramuscular dose has a clearance of 9.9±1.4L/h.
Inhaled tobramycin has an apparent serum clearance of 14.5 L/h in cystic fibrosis patients aged 6-58 years.
Elimination Route
Corticosteroids are generally eliminated predominantly in the urine. However, dexamethasone is 15
Tobramycin is primarily excreted unchanged in the urine.
Pregnancy & Breastfeeding use
Pregnancy Category C. There are no adequate and well-controlled studies in pregnant women. Corticosteroids should be used during pregnancy only if the potential benefit justifies. Glucocorticoids appear in breast milk, Mothers taking high dosages of corticosteroids should be advised not to breast-feed.
Pregnancy: This drug should be used during pregnancy only if clearly needed.
Lactation: Because of the potential for adverse reactions in nursing infants from Tobramycin, a decision should be made whether to discontinue nursing the infant or discontinue the drug, taking into account the importance of the drug to the mother.
Contraindication
In case of adrenal insufficiency, no absolute contraindications are applicable. In the treatment of non endocrine diseases where pharmacological doses are more likely to be used, the contraindications have to be considered carefully.
Relative contraindications include the followings: patient with Cushing’s syndrome, Osteoporosis, Diabetes mellitus, renal insufficiency, gastrointestinal ulcers, systemic fungal infection & acute infection.
In patients with known hypersensitivity to any component of the product. Partial crossallergenicity to other aminoglycosides has been established.
Special Warning
Renal Impairment: Inhalation: Dosage adjustment needed.
Acute Overdose
Overdose is unlikely; however, treatment of overdose is by supportive and symptomatic therapy.
Symptoms: Nephrotoxicity, auditory and vestibular toxicity (e.g. dizziness, tinnitus, vertigo, loss of high-tone hearing acuity), neuromuscular blockade or resp failure.
Management: Initiate resuscitative measures if resp paralysis occurs. Ca salts may be given to reverse neuromuscular blockade. Haemodialysis or peritoneal dialysis will help remove drug serum levels.
Storage Condition
Store at 15-30° C.
Store under refrigeration at 2-8° C, and protected from light. Slight color change when unrefrigerated do not indicate any change in the quality of the product. The preparation must not be used if it is cloudy, particles appear in the solution or has been stored at room temperature for over 28 dyas. For use only under the prescription of a registered physician. Do not use beyond the expiration date stamped on the ampoule.
Eye Drops Store in a cool and dry place, away from light. Keep out of reach of children.