Ubiq F Uses, Dosage, Side Effects and more
Melatonin and melatonin agonists inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the melatonin receptor antagonist luzindole, which suggests that melatonin activates a presynaptic melatonin receptor.
Melatonin is a hormone normally produced in the pineal gland and released into the blood. The essential amino acid L-tryptophan is a precursor in the synthesis of melatonin. It helps regulate sleep-wake cycles or the circadian rhythm. Production of melatonin is stimulated by darkness and inhibited by light. High levels of melatonin induce sleep and so consumption of the drug can be used to combat insomnia and jet lag.MT1 and MT2 receptors may be a target for the treatment of circadian and non circadian sleep disorders because of their differences in pharmacology and function within the SCN. SCN is responsible for maintaining the 24 hour cycle which regulates many different body functions ranging from sleep to immune functions
Selenium is a trace metal in the human body particularly important as a component of glutathione peroxidase, an important enzyme in the prevention of cellular damage by free radicals and reactive oxygen species
Selenium is incorporated into many different selenoproteins which serve various functions throughout the body .
A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with anemia, short stature, hypogonadism, impaired wound healing, and geophagia. It is identified by the symbol Zn .
A newer study suggests implies that an imbalance of zinc is associated with the neuronal damage associated with traumatic brain injury, stroke, and seizures .
Understanding the mechanisms that control brain zinc homeostasis is, therefore, imperative to the development of preventive and treatment regimens for these and other neurological disorders .
Trade Name | Ubiq F |
Generic | Ubiquinone + Melatonin + Vitex Agnus Castus + Selenium + Zinc |
Weight | 30mg |
Type | Capsule |
Therapeutic Class | |
Manufacturer | Fourrts India Laboratories Pvt Ltd |
Available Country | India |
Last Updated: | January 7, 2025 at 1:49 am |
Uses
Melatonin is used for numerous conditions but is showing the most promise in short-term regulation of sleep patterns, including jet lag.
Insomnia: Melatonin helps to induce sleep in people with-
- Disrupted circadian rhythms (such as those suffering from jet lag or poor vision or those who work the night shift)
- Low melatonin levels (such as some elderly and individuals with schizophrenia)
- Children with learning disabilities who suffer from insomnia.
Osteoporosis: Melatonin stimulates cells called osteoblasts that promote bone growth.
In Menopause:
Melatonin helps peri- or postmenopausal women to regulate sleep patterns.
Eating disorders: Melatonin levels may play a role in the symptoms of anorexia.
Sarcoidosis:
Sarcoidosis is an inflammatory disease that affects multiple organs in the body, but mostly the lungs and lymph glands.
Attention Deficit Hyperactivity Disorder (ADHD): It may be effective in managing sleep disturbances in children with this condition
Selenium is an ingredient found in a variety of supplements and vitamins.
For the supplementation of total parenteral nutrition to prevent hyposelenemia .
Zinc is an essential element commonly used for the treatment of patients with documented zinc deficiency.
Zinc can be used for the treatment and prevention of zinc deficiency/its consequences, including stunted growth and acute diarrhea in children, and slowed wound healing. It is also utilized for boosting the immune system, treating the common cold and recurrent ear infections, as well as preventing lower respiratory tract infections .
Ubiq F is also used to associated treatment for these conditions: InsomniaNutritional supplementationCandidiasis, Common Cold, Diaper Dermatitis, Diaper Rash, Eye redness, Iron Deficiency (ID), Ocular Irritation, Skin Irritation, Sunburn, Wilson's Disease, Zinc Deficiency, Dietary and Nutritional Therapies, Dietary supplementation
How Ubiq F works
Melatonin is a derivative of tryptophan. It binds to melatonin receptor type 1A, which then acts on adenylate cylcase and the inhibition of a cAMP signal transduction pathway. Melatonin not only inhibits adenylate cyclase, but it also activates phosphilpase C. This potentiates the release of arachidonate. By binding to melatonin receptors 1 and 2, the downstream signallling cascades have various effects in the body. The melatonin receptors are G protein-coupled receptors and are expressed in various tissues of the body. There are two subtypes of the receptor in humans, melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2). Melatonin and melatonin receptor agonists, on market or in clinical trials, all bind to and activate both receptor types.The binding of the agonists to the receptors has been investigated for over two decades or since 1986. It is somewhat known, but still not fully understood. When melatonin receptor agonists bind to and activate their receptors it causes numerous physiological processes. MT1 receptors are expressed in many regions of the central nervous system (CNS): suprachiasmatic nucleus of the hypothalamus (SNC), hippocampus, substantia nigra, cerebellum, central dopaminergic pathways, ventral tegmental area and nucleus accumbens. MT1 is also expressed in the retina, ovary, testis, mammary gland, coronary circulation and aorta, gallbladder, liver, kidney, skin and the immune system. MT2 receptors are expressed mainly in the CNS, also in the lung, cardiac, coronary and aortic tissue, myometrium and granulosa cells, immune cells, duodenum and adipocytes. The binding of melatonin to melatonin receptors activates a few signaling pathways. MT1 receptor activation inhibits the adenylyl cyclase and its inhibition causes a rippling effect of non activation; starting with decreasing formation of cyclic adenosine monophosphate (cAMP), and then progressing to less protein kinase A (PKA) activity, which in turn hinders the phosphorilation of cAMP responsive element-binding protein (CREB binding protein) into P-CREB. MT1 receptors also activate phospholipase C (PLC), affect ion channels and regulate ion flux inside the cell. The binding of melatonin to MT2 receptors inhibits adenylyl cyclase which decreases the formation of cAMP.[4] As well it hinders guanylyl cyclase and therefore the forming of cyclic guanosine monophosphate (cGMP). Binding to MT2 receptors probably affects PLC which increases protein kinase C (PKC) activity. Activation of the receptor can lead to ion flux inside the cell.
Selenium is first metabolized to selenophosphate and selenocysteine. Selenium incorporation is genetically encoded through the RNA sequence UGA . This sequence is recognized by RNA ste loop structures called selenocysteine inserting sequences (SECIS). These structures require the binding of SECIS binding proteins (SBP-2) to recognize selenocystiene. The specialized tRNA is first bound to a serine residue which is then enzymatically processed to a selylcysteyl-tRNA by selenocystiene sythase using selenophosphate as a selenium donor. Other unidentified proteins are required as part of the binding of this tRNA to the ribosome. Selenoproteins appear to be necessary for life as mice with the specialized tRNA gene knocked out exhibited early embryonic lethality .
The most important selenoproteins seem to be the glutathione peroxidases and thioredoxin reductases which are part of the body's defenses againts reactive oxygen species (ROS) . The importance of selenium in these anti-oxidant proteins has been implicated in the reduction of atherosclerosis by preventing the oxidation of low density lipoprotein . Selenium supplementation is also being investigated in the prevention of cancer and has been suggested to be beneficial to immune function .
Zinc has three primary biological roles: catalytic, structural, and regulatory. The catalytic and structural role of zinc is well established, and there are various noteworthy reviews on these functions. For example, zinc is a structural constituent in numerous proteins, inclusive of growth factors, cytokines, receptors, enzymes, and transcription factors for different cellular signaling pathways. It is implicated in numerous cellular processes as a cofactor for approximately 3000 human proteins including enzymes, nuclear factors, and hormones .
Zinc promotes resistance to epithelial apoptosis through cell protection (cytoprotection) against reactive oxygen species and bacterial toxins, likely through the antioxidant activity of the cysteine-rich metallothioneins .
In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF pathway, decreases NF-kappaB activation, leading to decreased gene expression and generation of tumor necrosis factor-alpha (TNF-alpha), IL-1beta, and IL-8 .
There are several mechanisms of action of zinc on acute diarrhea. Various mechanisms are specific to the gastrointestinal system: zinc restores mucosal barrier integrity and enterocyte brush-border enzyme activity, it promotes the production of antibodies and circulating lymphocytes against intestinal pathogens, and has a direct effect on ion channels, acting as a potassium channel blocker of adenosine 3-5-cyclic monophosphate-mediated chlorine secretion. Cochrane researchers examined the evidence available up to 30 September 2016 .
Zinc deficiency in humans decreases the activity of serum thymulin (a hormone of the thymus), which is necessary for the maturation of T-helper cells. T-helper 1 (Th(1)) cytokines are decreased but T-helper 2 (Th(2)) cytokines are not affected by zinc deficiency in humans [A342417].
The change of Th(1) to Th(2) function leads to cell-mediated immune dysfunction. Because IL-2 production (Th(1) cytokine) is decreased, this causes decreased activity of natural-killer-cell (NK cell) and T cytolytic cells, normally involved in killing viruses, bacteria, and malignant cells [A3424].
In humans, zinc deficiency may lead to the generation of new CD4+ T cells, produced in the thymus. In cell culture studies (HUT-78, a Th(0) human malignant lymphoblastoid cell line), as a result of zinc deficiency, nuclear factor-kappaB (NF-kappaB) activation, phosphorylation of IkappaB, and binding of NF-kappaB to DNA are decreased and this results in decreased Th(1) cytokine production .
In another study, zinc supplementation in human subjects suppressed the gene expression and production of pro-inflammatory cytokines and decreased oxidative stress markers [A3424]. In HL-60 cells (a human pro-myelocytic leukemia cell line), zinc deficiency increased the levels of TNF-alpha, IL-1beta, and IL-8 cytokines and mRNA. In such cells, zinc was found to induce A20, a zinc finger protein that inhibited NF-kappaB activation by the tumor necrosis factor receptor-associated factor pathway. This process decreased gene expression of pro-inflammatory cytokines and oxidative stress markers .
The exact mechanism of zinc in acne treatment is poorly understood. However, zinc is considered to act directly on microbial inflammatory equilibrium and facilitate antibiotic absorption when used in combination with other agents. Topical zinc alone as well as in combination with other agents may be efficacious because of its anti-inflammatory activity and ability to reduce P. acnes bacteria by the inhibition of P. acnes lipases and free fatty acid levels .
Dosage
Ubiq F dosage
Adult-
Insomnia: 3-6 mg one hour before bedtime
Jet lag: 0.50 to 5 mg one hour prior to bedtime at final destination or, 1 to 5 mg 1 hour before bedtime for 2 days prior to departure and for 2 to 3 days upon arrival at final destination.
- Eastbound travel: Take a preflight early evening treatment followed by treatment at bedtime for 4 days after arrival.
- Westbound travel: Take for 4 days at bedtime when in the new time zone.
Sarcoidosis:
20 mg per day for 4 to 12 months.
Depression: 0.125 mg twice in the late afternoon, each dose 4 hours apart.
Difficulty falling asleep: 5 mg 3 to 4 hours before an imposed sleep period over a 4-weeks period.
Children-
6 months to 14 years of age with sleep disorders: 0.30 mg/day
Side Effects
Increased seizure activity; drowsiness, headache. Disruption of normal circadian rhythm. May worsen symptoms for individuals with depression.
Toxicity
Generally well-tolerated when taken orally. The most common side effects, day-time drowsiness, headache and dizziness, appear to occur at the same frequency as with placebo. Other reported side effects include transient depressive symptoms, mild tremor, mild anxiety, abdominal cramps, irritability, reduced alertness, confusion, nausea, vomiting, and hypotension. Safety in Adults: Evidence indicates that it is likely safe to use in oral and parenteral forms for up to two months when used appropriately. Some evidence indicates that it can be safely used orally for up to 9 months in some patients. It is also likely safe to use topically when used appropriately. Safety in Children: Melatonin appeared to be used safely in small numbers of children enrolled in short-term clinical trials. However, concerns regarding safety in children have arisen based on their developmental state. Compared to adults over 20 years of age, people under 20 produce high levels of melatonin. Melatonin levels are inversely related to gonadal development and it is thought that exogenous administration of melatonin may adversely affect gonadal development. Safety during Pregnancy: High doses of melatonin administered orally or parenterally may inhibit ovulation. Not advised for use in individuals who are pregnant or trying to become pregnant. Safety during Lactation: Not recommended as safety has not be established.
Oral, rat: LD50 ≥3200 mg/kg
Oral LD50 of 6700mg/kg in rats . Selenium exposure is teratogenic and can result in fetal death as tested in mice. Chronic toxicity is characterized by hair loss, white horizontal streaking on fingernails, paronchyia, fatigue, irritability, hyperreflexia, nausea, vomiting, garlic odor on breath, and metallic taste . Serum selenium correlates weakly with symtoms. Blood chemistry as well as liver and kidney function are normally unnaffected. Acute toxicity presents as stupor, respiratory depression, and hypotension. ST elevations and t-wave changes characteristic of myocardial infarction may be observed.
According to the Toxnet database of the U.S. National Library of Medicine, the oral LD50 for zinc is close to 3 g/kg body weight, more than 10-fold higher than cadmium and 50-fold higher than mercury .
The LD50 values of several zinc compounds (ranging from 186 to 623 mg zinc/kg/day) have been measured in rats and mice .
Precaution
Caffeine and fluvoxamine may increase the effects of melatonin, while melatonin may decrease the antihypertensive effect of nifedipine.
Interaction
Antidepressant Medications: Melatonin reduces the antidepressant effects of desipramine and fluoxetine. In addition, fluoxetine leads to measurable depletion of melatonin in people.
Antipsychotic Medications: People with schizophrenia and tardive dyskinesia taking antipsychotic medications with melatonin has significantly reduced mouth movements compared to those who did not take the supplements.
Benzodiazepines: The combination of melatonin and triazolam improves sleep quality. In addition, there have been a few reports suggesting that melatonin supplements may help individuals stop using long-term benzodiazepine therapy.
Blood Pressure Medications: Melatonin may reduce the effectiveness of blood pressure medications like methoxamine and clonidine. In addition, calcium channel blockers (such as nifedipine, verapamil, diltiazem, amlodipine, nimodipine, felodipine, nisoldipine, and bepridil) may decrease melatonin levels. Use of beta-blockers (propranolol, acebutolol, atenolol, labetolol, metoprolol, pindolol, nadolol, sotalol, and timolol) may reduce melatonin production in the body.
Blood-Thinning Medications, Anticoagulants: Melatonin may increase the risk of bleeding from anticoagulant medications such as warfarin.
Interleukin 2: In one study of 80 cancer patients, use of melatonin in conjunction with interleukin-2 led to more tumor regression and better survival rates than treatment with interleukin-2 alone.
Nonsteroidal Anti-inflammatory Drugs (NSAIDs): NSAIDs such as ibuprofen may reduce the levels of melatonin in the blood.
Steroids and Immunosuppressant Medications: People should not take melatonin with corticosteroids or other medications used to suppress the immune system because the supplement may cause them to be ineffective.
Tamoxifen: Preliminary research suggests that the combination of tamoxifen (a chemotherapy drug) and melatonin may benefit certain patients with breast and other cancers.
Other Substances: Caffeine, tobacco, and alcohol can all diminish levels of melatonin in the body while cocaine and amphetamines may increase melatonin production.
Volume of Distribution
A pharmacokinetic study was done in rats to determine the distribution and other metabolic indexes of zinc in two particle sizes. It was found that zinc particles were mainly distributed to organs including the liver, lung, and kidney within 72 hours without any significant difference being found according to particle size or rat gender .
Elimination Route
The absorption and bioavailability of melatonin varies widely.
Oral bioavailability of 90% when given as L-selenomethionine . Tmax of 9.17h.
Zinc is absorbed in the small intestine by a carrier-mediated mechanism . Under regular physiologic conditions, transport processes of uptake do not saturate. The exact amount of zinc absorbed is difficult to determine because zinc is secreted into the gut. Zinc administered in aqueous solutions to fasting subjects is absorbed quite efficiently (at a rate of 60-70%), however, absorption from solid diets is less efficient and varies greatly, dependent on zinc content and diet composition .
Generally, 33% is considered to be the average zinc absorption in humans . More recent studies have determined different absorption rates for various populations based on their type of diet and phytate to zinc molar ratio. Zinc absorption is concentration dependent and increases linearly with dietary zinc up to a maximum rate [L20902].
Additionally zinc status may influence zinc absorption. Zinc-deprived humans absorb this element with increased efficiency, whereas humans on a high-zinc diet show a reduced efficiency of absorption .
Half Life
35 to 50 minutes
Half life was observed to increase with chronic dosing time . For day 1-2 half life was 1.7 days. For day 2-3 half life was 3 days. For day 3-14 half life was 11.1 days.
The half-life of zinc in humans is approximately 280 days .
Clearance
In one study of healthy patients, the clearance of zinc was found to be 0.63 ± 0.39 μg/min .
Elimination Route
Mainly excreted in urine as 1beta-methylseleno-N-acetyl-d-galactosamine and trimethylselenonium . The amount excreted as 1beta-methylseleno-N-acetyl-d-galactosamine plateaus at doses around 2microg after which the amount excreted as trimethylselenonium increases. Some selenium is also excreted in feces when given orally .
The excretion of zinc through gastrointestinal tract accounts for approximately one-half of all zinc eliminated from the body .
Considerable amounts of zinc are secreted through both biliary and intestinal secretions, however most is reabsorbed. This is an important process in the regulation of zinc balance. Other routes of zinc excretion include both urine and surface losses (sloughed skin, hair, sweat) .
Zinc has been shown to induce intestinal metallothionein, which combines zinc and copper in the intestine and prevents their serosal surface transfer. Intestinal cells are sloughed with approximately a 6-day turnover, and the metallothionein-bound copper and zinc are lost in the stool and are thus not absorbed .
Measurements in humans of endogenous intestinal zinc have primarily been made as fecal excretion; this suggests that the amounts excreted are responsive to zinc intake, absorbed zinc and physiologic need .
In one study, elimination kinetics in rats showed that a small amount of ZnO nanoparticles was excreted via the urine, however, most of the nanoparticles were excreted via the feces .
Pregnancy & Breastfeeding use
Information regarding safety and efficacy in pregnancy and lactation is not available.
Contraindication
Melatonin should not be used by patients who have autoimmune diseases.
Acute Overdose
There is little or no evidence of any major toxicities with melatonin, even at high doses.
Storage Condition
Store in a cool & dry place, protected from light & moisture.