Viscolate Linctus Uses, Dosage, Side Effects and more
Bromhexine is an oral mucolytic agent with a low level of associated toxicity. It acts on the mucus at the formative stages in the glands, within the mucus-secreting cells. Bromhexine disrupts the structure of acid mucopolysaccharide fibres in mucoid sputum and produces less viscous mucus, which is easier to expectorate
Bromhexine thins airway secretions, improving breathing and discomfort associated with thick mucus in airways associated with a variety of respiratory conditions.
Chlorpheniramine is an alkylamine antihistamine. It is one of the most potent H1 blocking agents and is generally effective in relatively low doses. Chlorpheniramine is not so prone to produce drowsiness, readily absorbed from the gastro-intestinal tract, metabolised in the liver and excreted usually mainly as metabolised in the urine.
In allergic reactions an allergen interacts with and cross-links surface IgE antibodies on mast cells and basophils. Once the mast cell-antibody-antigen complex is formed, a complex series of events occurs that eventually leads to cell-degranulation and the release of histamine (and other chemical mediators) from the mast cell or basophil. Once released, histamine can react with local or widespread tissues through histamine receptors. Histamine, acting on H1-receptors, produces pruritis, vasodilatation, hypotension, flushing, headache, tachycardia, and bronchoconstriction. Histamine also increases vascular permeability and potentiates pain. Chlorpheniramine, is a histamine H1 antagonist (or more correctly, an inverse histamine agonist) of the alkylamine class. It competes with histamine for the normal H1-receptor sites on effector cells of the gastrointestinal tract, blood vessels and respiratory tract. It provides effective, temporary relief of sneezing, watery and itchy eyes, and runny nose due to hay fever and other upper respiratory allergies.
Paracetamol exhibits analgesic action by peripheral blockage of pain impulse generation. It produces antipyresis by inhibiting the hypothalamic heat-regulating centre. Its weak anti-inflammatory activity is related to inhibition of prostaglandin synthesis in the CNS.
Paracetamol (Acetaminophen) is thought to act primarily in the CNS, increasing the pain threshold by inhibiting both isoforms of cyclooxygenase, COX-1, COX-2, and COX-3 enzymes involved in prostaglandin (PG) synthesis. Unlike NSAIDs, acetaminophen does not inhibit cyclooxygenase in peripheral tissues and, thus, has no peripheral anti-inflammatory affects. While aspirin acts as an irreversible inhibitor of COX and directly blocks the enzyme's active site, studies have found that acetaminophen indirectly blocks COX, and that this blockade is ineffective in the presence of peroxides. This might explain why acetaminophen is effective in the central nervous system and in endothelial cells but not in platelets and immune cells which have high levels of peroxides. Studies also report data suggesting that acetaminophen selectively blocks a variant of the COX enzyme that is different from the known variants COX-1 and COX-2. This enzyme is now referred to as COX-3. Its exact mechanism of action is still poorly understood, but future research may provide further insight into how it works. The antipyretic properties of acetaminophen are likely due to direct effects on the heat-regulating centres of the hypothalamus resulting in peripheral vasodilation, sweating and hence heat dissipation.
Phenylephrine is an alpha-1 adrenergic receptor agonist used to treat hypotension, dilate the pupil, and induce local vasoconstriction. The action of phenylephrine, or neo-synephrine, was first described in literature in the 1930s.
Phenylephrine was granted FDA approval in 1939.
Phenylephrine is an alpha-1 adrenergic agonist that raises blood pressure, dilates the pupils, and causes local vasoconstriction. Ophthalmic formulations of phenylephrine act for 3-8 hours while intravenous solutions have an effective half life of 5 minutes and an elimination half life of 2.5 hours. Patients taking ophthalmic formulations of phenylephrine should be counselled about the risk of arrhythmia, hypertension, and rebound miosis. Patients taking an intravenous formulation should be counselled regarding the risk of bradycardia, allergic reactions, extravasation causing necrosis or tissue sloughing, and the concomitant use of oxytocic drugs.
Trade Name | Viscolate Linctus |
Generic | Bromhexine + Chlorpheniramine + Menthol + Paracetamol + Phenylephrine |
Type | |
Therapeutic Class | |
Manufacturer | Merril Pharma Pvt Ltd |
Available Country | India |
Last Updated: | January 7, 2025 at 1:49 am |
Uses
Bromhexineis used for the treatment of respiratory disorders associated with productive cough. These include; tracheobronchitis, bronchitis with emphysema, bronchiectasis, bronchitis with bronchospasm, chronic inflammatory pulmonary conditions and pneumoconiosis.
Indicated mainly in allergic conditions including urticaria, sensitivity reactions, angioneurotic oedema, seasonal hay fever, vasomotor rhinitis, cough, common cold, motion sickness.
Paracetamol IV is used for the management of mild to moderate pain, the management of moderate to severe pain with adjunctive opioid analgesics, the reduction of fever.
Paracetamol is a non-salicylate antipyretic and non-opioid analgesic agent. Paracetamol IV injection is a sterile, clear, colorless, non pyrogenic, isotonic formulation of Paracetamol intended for intravenous infusion.
Phenylephrine is an alpha-1 adrenergic agonist used in the management of hypotension, generally in the surgical setting associated with the use of anesthetics.
Phenylephrine injections are indicated to treat hypotension caused by shock or anesthesia, an ophthalmic formulation is indicated to dilate pupils and induce vasoconstriction, an intranasal formulation is used to treat congestion, and a topical formulation is used to treat hemorrhoids. Off-label uses include situations that require local blood flow restriction such as the treatment of priapism.
Viscolate Linctus is also used to associated treatment for these conditions: Bronchiectasis, Common Cold, Cough, Cough caused by Common Cold, Nasal Congestion, Whooping Cough, Airway secretion clearance therapyAllergic Contact Dermatitis, Allergic Reaction, Allergic Rhinitis (AR), Allergic cough, Allergies, Allergies caused by Serum, Allergy to House Dust, Allergy to vaccine, Angioneurotic Edema, Asthma, Bronchial Asthma, Bronchitis, Common Cold, Conjunctival congestion, Conjunctivitis, Conjunctivitis allergic, Cough, Cough caused by Common Cold, Coughing caused by Flu caused by Influenza, Drug Allergy, Eye allergy, Fever, Flu caused by Influenza, Food Allergy, Headache, Headache caused by Allergies, Itching of the nose, Itching of the throat, Migraine, Nasal Congestion, Nasal Congestion caused by Common Cold, Pollen Allergy, Productive cough, Pruritus, Rash, Rhinorrhoea, Seasonal Allergic Conjunctivitis, Sinus Congestion, Sinusitis, Sneezing, Transfusion Reactions, Upper Respiratory Tract Infection, Upper respiratory tract hypersensitivity reaction, site unspecified, Urticaria, Vasomotor Rhinitis, Acute Rhinitis, Allergic purpura, Conjunctival hyperemia, Dry cough, Excess mucus or phlegm, Itchy throat, Mild bacterial upper respiratory tract infections, Ocular hyperemia, Throat inflammation, Upper airway congestion, Upper respiratory symptoms, Watery eyes, Watery itchy eyes, Airway secretion clearance therapyAcute Gouty Arthritis, Acute Musculoskeletal Pain, Allergies, Ankylosing Spondylitis (AS), Arthritis, Chills, Cold, Cold Symptoms, Common Cold, Common Cold/Flu, Cough, Cough caused by Common Cold, Coughing caused by Flu caused by Influenza, Dyskinesia of the Biliary Tract, Dyskinesia of the Urinary Tract, Febrile Convulsions, Febrile Illness Acute, Fever, Fibromyalgia Syndrome, Flu caused by Influenza, Headache, Joint dislocations, Menstrual Distress (Dysmenorrhea), Mild pain, Muscle Inflammation, Muscle Injuries, Muscle Spasms, Musculoskeletal Pain, Nasal Congestion, Neuralgia, Osteoarthritis (OA), Pain, Pollen Allergy, Postoperative pain, Premenstrual cramps, Rheumatoid Arthritis, Rhinopharyngitis, Rhinorrhoea, Severe Pain, Sinusitis, Soreness, Muscle, Spasms, Spastic Pain of the Gastrointestinal Tract, Sprains, Tension Headache, Toothache, Upper Respiratory Tract Infection, Whiplash Syndrome, Acute Torticollis, Mild to moderate pain, Minor aches and pains, Minor pain, Moderate Pain, Airway secretion clearance therapy, Antispasmodic, BronchodilationAllergic Rhinitis (AR), Anorectal discomfort, Cold, Common Cold, Common Cold/Flu, Congestion of the Conjunctivas, Conjunctivitis allergic, Cough, Cough caused by Common Cold, Eye allergy, Eye redness, Fever, Flu caused by Influenza, Headache, Headache caused by Allergies, Headache caused by Common Cold, Headache caused by Pollen Allergy, Hemorrhoids, Hypotension, Irritative cough, Itching of the nose, Itching of the throat, Laryngotracheitis, Nasal Congestion, Nose discomfort, Ocular Inflammation, Ocular Irritation, Paroxysmal Supraventricular Tachycardia, Pollen Allergy, Respiratory tract congestion, Respiratory tract irritation, Rhinopharyngitis, Rhinorrhoea, Seasonal Allergies, Shock, Cardiogenic, Sinus Congestion, Sinus pressure, Sinusitis, Sneezing, Sore Throat, Tracheobronchitis, Upper respiratory tract hypersensitivity reaction, site unspecified, Vasomotor Rhinitis, Aching caused by Flu caused by Influenza, Bronchial congestion, Itchy throat, Minor aches and pains, Watery itchy eyes, Airway secretion clearance therapy, Antihistamine, Dilatation of the pupil, Vasoconstrictor in regional analgesia therapy
How Viscolate Linctus works
Inflammation of the airways, increased mucus secretion, and altered mucociliary clearance are the hallmarks of various diseases of the respiratory tract. Mucus clearance is necessary for lung health; bromhexine aids in mucus clearance by reducing the viscosity of mucus and activating the ciliary epithelium, allowing secretions to be expelled from the respiratory tract.
Recent have studies have demonstrated that bromhexine inhibits the transmembrane serine protease 2 receptor (TMPRSS2) in humans. Activation of TMPRSS2 plays an important role in viral respiratory diseases such as influenza A and Middle East Respiratory Syndrome (MERS). Inhibition of receptor activation and viral entry by bromhexine may be effective in preventing or treating various respiratory illnesses, including COVID-19. In vitro studies have suggested the action of ambroxol (a metabolite of bromhexine) on the angiogensin-converting enzyme receptor 2 (ACE2), prevents entry of the viral envelope-anchored spike glycoprotein of SARS-Cov-2 into alveolar cells or increases the secretion of surfactant, preventing viral entry.
Chlorpheniramine binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine.
Phenylephrine is an alpha-1 adrenergic agonist that mediates vasoconstriction and mydriasis depending on the route and location of administration. Systemic exposure to phenylephrine also leads to agonism of alpha-1 adrenergic receptors, raising systolic and diastolic pressure as well as peripheral vascular resistance. Increased blood pressure stimulates the vagus nerve, causing reflex bradycardia.
Dosage
Viscolate Linctus dosage
BromhexineTablet:
Adults and children over 10 years: 8-16 mg 3 times daily. Children 5-10 years: 4 mg 3 times daily.
BromhexineSyrup:
Adults: The recommended daily dose is 2 to 4 teaspoonful 3 times. Initially 4 teaspoonful 3 times daily and then as required.
Children: Suggested dosage for children under 2 years is 1/4 teaspoonful 3 times daily, for 2-5 years 1/2 teaspoonful 3 times daily and for children aged 5-10 years 1 teaspoonful 3 times daily.
Adults: 4 mg 3-4 times daily.
Children:
- Up to 1( one) year: 1 mg twice daily
- 1-5 years: 1 mg 3-4 times daily
- 6-12 years: 2 mg 3-4 times daily or as directed by the physician
Adults and adolescents weighing 50 kg and over: the recommended dosage of Paracetamol IV is 1000 mg every 6 hours or 650 mg every 4 hours, with a maximum single dose of Paracetamol IV of 1000 mg, a minimum dosing interval of 4 hours, and a maximum daily dose of Paracetamol of 4000 mg per day.
Adults and adolescents weighing under 50 kg: the recommended dosage of Paracetamol IV is 15 mg/kg every 6 hours or 12.5 mg/kg every 4 hours, with a maximum single dose of Paracetamol IV of 15 mg/kg, a minimum dosing interval of 4 hours, and a maximum daily dose of Paracetamol of 75 mg/kg per day.
Children >2 to 12 years of age: the recommended dosage of Paracetamol IV is 15 mg/kg every 6 hours or 12.5 mg/kg every 4 hours, with a maximum single dose of Paracetamol IV of 15 mg/kg, a minimum dosing interval of 4 hours, and a maximum daily dose of Paracetamol of 75 mg/kg per day.
Side Effects
Gastrointestinal side-effects may occur occasionally with Bromhexine and a transient rise in serum aminotransferase values has been reported. Other reported adverse effects include headache, dizziness, sweating and skin rash.
Drowsiness, dizziness, headache, psychomotor impairment, urinary retention, dry mouth, blurred vision and gastro intestinal disturbances, paradoxical stimulation may rarely occur, especially in high dosage or in children.
As all paracetamol products, adverse drug reactions are rare (>1/10000, <1/1000) or very rare (<1/10000). Frequent adverse reactions at injection site have been reported during clinical trials (pain and burning sensation). Very rare cases of hypersensitivity reactions ranging from simple skin rash or urticaria to anaphylactic shock have been reported and require discontinuation of treatment. Cases of erythema, flushing, pruritus and tachycardia have been reported.
Toxicity
The oral LD50 of bromhexine in rats is 6 g/kg. The observed symptoms of accidental overdose with bromhexine are consistent with the known adverse effects of bromhexine, including headache, nausea, and vomiting, among other symptoms. Provide symptomatic treatment and contact poison control services if an overdose is confirmed or suspected.
Oral LD50 (rat): 306 mg/kg; Oral LD50 (mice): 130 mg/kg; Oral LD50 (guinea pig): 198 mg/kg [Registry of Toxic Effects of Chemical Substances. Ed. D. Sweet, US Dept. of Health & Human Services: Cincinatti, 2010.] Also a mild reproductive toxin to women of childbearing age.
Patients experiencing and overdose may present with headache, hypertension, reflex bradycardia, tingling limbs, cardiac arrhythmias, and a feeling of fullness in the head. Overdose may be treated by supportive care and discontinuing phenylephrine, chronotropic medications, and vasodilators. Subcutaneous phentolamine may be used to treat tissue extravasation.
Precaution
Since mucolytics may disrupt the gastric mucosa so Bromhexine should be used with care in patients with a history of peptic ulceration.
Chlorpheniramine may produce mild sedation and it is advised that patients under continuous treatment should avoid operating machinery. Not recommended during pregnancy & lactation.
Administration of Paracetamol in doses higher than recommended may result in hepatic injury, including the risk of severe hepatotoxicity and death. Do not exceed the maximum recommended daily dose of Paracetamol. Use caution when administering Paracetamol in patients with the following conditions: hepatic impairment or active hepatic disease, alcoholism, chronic malnutrition, severe hypovolemia (e.g., due to dehydration or blood loss), or severe renal impairment (creatinine clearance < 30 ml/min). There were infrequent reports of life-threatening anaphylaxis requiring emergent medical attention. Discontinue Paracetamol IV immediately if symptoms associated with allergy or hypersensitivity occurs. Do not use Paracetamol IV in patients with Paracetamol allergy.
Interaction
Alcohol, CNS depressants, anticholinergic drugs, MAOIs.
Volume of Distribution
After intravenous administration in a pharmacokinetic study, bromhexine was found to be widely distributed. Bromhexine is known to cross the blood-brain barrier; small concentrations may cross the placenta. The average volume of distribution of bromhexine was 1209 ± 206 L (19 L/kg). Lung tissue concentrations of bromhexine two hours after a dose were 1.5 to 3.2 times higher in bronchial tissues than plasma concentrations. Pulmonary parynchema concentrations were 3.4 to 5.9 times higher when compared to plasma concentrations.
Volume of distribution is about 0.9L/kg. 10 to 20% of the drug is bound to red blood cells. Acetaminophen appears to be widely distributed throughout most body tissues except in fat.
The volume of distribution of phenylephrine is 340L.
Elimination Route
After oral administration, bromhexine demonstrates linear pharmacokinetics when given in doses of 8-32 mg. Bromhexine is readily absorbed in the gastrointestinal tract at a rapid rate. This drug undergoes extensive first-pass effect in the range of 75-80%. The bioavailability is therefore reduced to approximately 22-27%.
Well absorbed in the gastrointestinal tract.
Phenylephrine is 38% orally bioavailable. Clinically significant systemic absorption of ophthalmic formulations is possible, especially at higher strengths and when the cornea is damaged.
Half Life
Following single oral doses ranging from 8 and 32 mg, the terminal half-life of bromhexine has been measured between 6.6 and 31.4 hours.
21-27 hours
The half-life for adults is 2.5 h after an intravenous dose of 15 mg/kg. After an overdose, the half-life can range from 4 to 8 hours depending on the severity of injury to the liver, as it heavily metabolizes acetaminophen.
Intravenous phenylephrine has an effective half life of 5 minutes and an elimination half life of 2.5 hours.
Clearance
The clearance of bromhexine ranges from 843-1073 mL/min, within the range of the hepatic circulation.
Adults: 0.27 L/h/kg following a 15 mg/kg intravenous (IV) dose. Children: 0.34 L/h/kg following a 15 mg/kg intravenous (IV dose).
Phenylephrine has an average clearance of 2100mL/min.
Elimination Route
After a dose of bromhexine was administered during a pharmacokinetic study, approximately 97% of the radiolabeled dose was detected in the urine; under 1% was detected as the parent drug.
86% of a dose of phenylephrine is recovered in the urine with 16% as the unmetabolized drug, 57% as the inactive meta-hydroxymendelic acid, and 8% as inactive sulfate conjugates.
Pregnancy & Breastfeeding use
Pregnancy Category B. Bromhexine has been taken by a large number of pregnant women and women of child bearing age without any proven increase in the frequency of malformations or other direct or indirect harmful effects on the fetus having been observed.
It is not known whether bromhexine is excreted in breast milk or whether it has a harmful effect on the breastfeeding infant. Therefore it is not recommended for breast feeding mothers unless the potential benefits to the patient are weighed against the possible risk to the infant.
Pregnancy Category B. Either animal-reproduction studies have not demonstrated a foetal risk but there are no controlled studies in pregnant women or animal-reproduction studies have shown an adverse effect (other than a decrease in fertility) that was not confirmed in controlled studies in women in the 1st trimester (and there is no evidence of a risk in later trimesters).
Pregnancy Category C. There are no studies of intravenous Paracetamol in pregnant women; however, epidemiological data on oral Paracetamol use in pregnant women show no increased risk of major congenital malformations. Animal reproduction studies have not been conducted with IV Paracetamol and it is not known whether Paracetamol IV can cause fetal harm when administered to a pregnant woman. Paracetamol IV should be given to a pregnant woman only if clearly needed. There are no adequate and well-controlled studies with Paracetamol IV during labor and delivery; therefore, it should be used in such settings only after a careful benefit-risk assessment. While studies with Paracetamol IV have not been conducted, Paracetamol is secreted in human milk in small quantities after oral administration.
Contraindication
Contraindicated to those who are hypersensitive to Bromhexine Hydrochloride.
There is no definite contraindication to therapy. It should be used with caution in epilepsy, prostatic hypertrophy, glaucoma and hepatic disease. The ability to drive or operate machinery may be impaired.
Paracetamol is contraindicated in patients with known hypersensitivity to its active ingredient or to any of the excipients in the intravenous formulation. Also contraindicated in patients with severe hepatic impairment or severe active liver disease
Special Warning
Pediatric Use: The safety and effectiveness of Paracetamol IV for the treatment of acute pain and fever in pediatric patients ages 2 years and older is supported by evidence from adequate and well-controlled studies of Paracetamol IV in adults.
Geriatric use: No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients.
Patients with Hepatic Impairment: Paracetamol is contraindicated in patients with severe hepatic impairment or severe active liver disease and should be used with caution in patients with hepatic impairment or active liver disease. A reduced total daily dose of Paracetamol may be warranted.
Patients with Renal Impairment: In cases of severe renal impairment (creatinine clearance < 30 ml/min), longer dosing intervals and a reduced total daily dose of Paracetamol may be warranted.
Storage Condition
Store below 25° C. Protect from light. Keep the container tightly closed.
Store in a cool & dry place & away from children. For single use only. The product should be used within 6 hours after opening. Do not refrigerate or freeze.