Vitakind Liv Vet
Vitakind Liv Vet Uses, Dosage, Side Effects, Food Interaction and all others data.
Calcium is used to prevent or treat negative calcium balance. It also helps facilitate nerve and muscle performance as well as normal cardiac function. Bone mineral component; cofoactor in enzymatic reactions, essential for neurotransmission, muscle contraction, and many signal transduction pathways.
Both components of calcium lactate, calcium ion and lactic acid, play essential roles in the human body as a skeletal element an energy source, respectively .
Ferrous gluconate is used in the prevention and treatment of iron-deficiency anaemia. It replaces iron found in haemoglobin, myoglobin and enzymes. It also allows transportation of oxygen via haemoglobin.
The major activity of supplemental iron is in the prevention and treatment of iron deficiency anemia. Iron has putative immune-enhancing, anticarcinogenic and cognition-enhancing activities.
An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake.
Riboflavin is a B vitamin. It can be found in certain foods such as milk, meat, eggs, nuts, enriched flour, and green vegetables. Riboflavin is frequently used in combination with other B vitamins in vitamin B complex products. Vitamin B complex generally includes vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin/niacinamide), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B12 (cyanocobalamin), and folic acid. However, some products do not contain all of these ingredients and some may include others, such as biotin, para-aminobenzoic acid (PABA), choline bitartrate, and inositol.
Riboflavin is used for preventing low levels of riboflavin (riboflavin deficiency), cervical cancer, and migraine headaches. It is also used for treating riboflavin deficiency, acne, muscle cramps, burning feet syndrome, carpal tunnel syndrome, and blood disorders such as congenital methemoglobinemia and red blood cell aplasia. Some people use riboflavin for eye conditions including eye fatigue, cataracts, and glaucoma.
Other uses include increasing energy levels; boosting immune system function; maintaining healthy hair, skin, mucous membranes, and nails; slowing aging; boosting athletic performance; promoting healthy reproductive function; canker sores; memory loss, including Alzheimer's disease; ulcers; burns; alcoholism; liver disease; sickle cell anemia; and treating lactic acidosis brought on by treatment with a class of AIDS medications called NRTI drugs.
Riboflavin or vitamin B2 is an easily absorbed, water-soluble micronutrient with a key role in maintaining human health. Like the other B vitamins, it supports energy production by aiding in the metabolising of fats, carbohydrates, and proteins. Vitamin B2 is also required for red blood cell formation and respiration, antibody production, and for regulating human growth and reproduction. It is essential for healthy skin, nails, hair growth and general good health, including regulating thyroid activity. Riboflavin also helps in the prevention or treatment of many types of eye disorders, including some cases of cataracts.
Silymarin possess hepatoprotective and antioxidant activity. The hepatoprotective effect is due to stimulation of synthesis of structural and functional proteins and phospholipids, as well as acceleration of the regeneration of hepatocytes.
Antioxidant effect is determined by interaction of bioflavones with free radicals in the liver and its detoxication. In such manner the process of peroxidation of the lipids is interupted and further liver destruction is prevented.
Clinically, these effects are manifested by improvement of the signs and symptoms and normalization of the liver variables (serum level of transaminases, gamma-globulins, and bilirubin).
Thiamine, in the form of thiamine pyrophosphate, is the coenzyme for decarboxylation of α-ketoglutaric acid. Thiamine deficiency affects the peripheral nervous system, the gastrointestinal tract, and the cardiovascular system. This vitamin is necessary for the optimal growth of infants and children. Thiamine is not stored in the body, and is regularly lost from tissues during short periods of deficiency. In order to maintain normal health, an adequate amount of thiamine is required every day. Deficiency of thiamine leads to fatigue, anorexia, gastrointestinal disturbance, tachycardia, irritability and neurological symptoms. Beriberi, a disease due to vitamin B1 deficiency, is common in alcoholics, in pregnant women receiving an inadequate diet, and in people with malabsorption syndrome, prolonged diarrhoea and hepatic disease.
Thiamine is well absorbed from the gastrointestinal tract and widely distributed throughout the body. Thiamine is rapidly absorbed from the upper small intestine. Thiamine is not stored in the body to any appreciable extent. Excess ingested thiamine appears in urine as intact thiamine or as pyrimidine, which arises from degradation of the thiamine molecule. The plasma half life of thiamine is 24 hours.
Thiamine is a vitamin with antioxidant, erythropoietic, cognition-and mood-modulatory, antiatherosclerotic, putative ergogenic, and detoxification activities. Thiamine has been found to protect against lead-induced lipid peroxidation in rat liver and kidney. Thiamine deficiency results in selective neuronal death in animal models. The neuronal death is associated with increased free radical production, suggesting that oxidative stress may play an important early role in brain damage associated with thiamine deficiency. Thiamine plays a key role in intracellular glucose metabolism and it is thought that thiamine inhibits the effect of glucose and insulin on arterial smooth muscle cell proliferation. Inhibition of endothelial cell proliferation may also promote atherosclerosis. Endothelial cells in culture have been found to have a decreased proliferative rate and delayed migration in response to hyperglycemic conditions. Thiamine has been shown to inhibit this effect of glucose on endothelial cells.
Trade Name | Vitakind Liv Vet |
Generic | Ferrous Chloride + Ferrous Gluconate + Thiamine + Riboflavin + Nicotinic Acid + Nicotinamide + Calcium Lactate + Liver Fraction 2 + Silymarin |
Weight | 80mg |
Type | Syrup, Injection |
Therapeutic Class | |
Manufacturer | Mankind Pharmaceuticals Ltd |
Available Country | India |
Last Updated: | September 19, 2023 at 7:00 am |
Uses
Calcium Lactate is used for heartburn, calcium supplement, calcium deficiencies.
Ferrous chloride is an iron supplement indicated in parenteral nutrition.
Iron-deficiency anemia.
Nicotinamide is an ingredient found in a variety of cosmetic products.
Preventing and treating riboflavin deficiency and conditions related to riboflavin deficiency.
Cataracts, an eye disorder. People who eat more riboflavin as part of their diet seems to have a lower risk of developing cataracts. Also, taking supplements containing riboflavin plus niacin seems to help prevent cataracts.
High amounts of homocysteine in the blood (hyperhomocysteinemia). Some people are unable to convert the chemical homocysteine into the amino acid methionine. People with this condition, especially those with low riboflavin levels, have high amounts of homocysteine in the blood. Taking riboflavin for 12 weeks seems to reduce homocysteine levels by up to 40% in some people with this condition. Also, certain antiseizure drugs can increase homocysteine in the blood. Taking riboflavin along with folic acid and pyridoxine seems to lower homocysteine levels by 26% in people with high homocysteine levels due to antiseizure drugs.
Migraine headaches. Taking high-dose riboflavin (400 mg/day) seems to significantly reduce the number of migraine headache attacks. However, taking riboflavin does not appear to reduce the amount of pain or the amount of time a migraine headache lasts. Also, taking lower doses of riboflavin (200 mg/day) does not seem to reduce the number of migraine headache attacks.
For the treatment of jaundice, chronic inflammatory liver conditions, i.e. hepatitis, alcoholic liver damage and hepatic cirrhosis. It has anti-oxidant property.
Thiamine is specifically used in the treatment of the various manifestations of thiamine deficiency such as Beriberi and Wernick's encephalopathy, neuritis associated with pregnancy and pellagra. Supplementary Thiamine may be used prophylactically in conditions where there is low dietary intake or impaired gastro intestinal absorption of thiamine (e.g. alcohol) or where requirements are increased (pregnancy, carbohydrate rich diet).
Vitakind Liv Vet is also used to associated treatment for these conditions: Calcium DeficiencyFolate deficiency, Iron Deficiency (ID), Iron Deficiency Anemia (IDA), Zinc Deficiency, Mineral supplementationGastrointestinal insufficiency, Hepatic Insufficiency, Macrocytic anemia, Secondary anemia, Vitamin Deficiency, Severe debilitation, Dietary and Nutritional Therapies, Nutritional supplementation, Dietary supplementationAriboflavinosis, Beriberi, Constipation, Functional Gastrointestinal Disorders, Joint Pain, Metabolic cardiomyopathy, Migraine, Neuralgia, Peripheral neuritis, Peripheral paralysis, Soreness, Muscle, Vitamin B complex deficiency, Vitamin B1 deficiency, Vitamin Deficiency, Wernicke's encephalopathy, Dietary and Nutritional Therapies, Nutritional supplementation, Vitamin supplementation, Dietary supplementationAnemia, B12 Deficiency Anemia, Beriberi, Cardiovascular Heart Disease caused by Thiamine Deficiency, Folic Acid Deficiency Anemia, Infantile Beriberi, Infection, Iron Deficiency (ID), Liver disorder, Neuritis caused by Pregnancy, Secondary anemia, Thiamine Deficiency, Vitamin Deficiency, Wernicke's encephalopathy, Nutritional supplementation, Vitamin supplementation, Dietary supplementation
How Vitakind Liv Vet works
In aqueous environments such as the gastrointestinal (GI) tract, calcium lactate will dissociate into calcium cation and lactic acid anions, the conjugate base of lactic acid. Lactic acid is a naturally-occurring compound that serves as fuel or energy in mammals by acting as an ubiquitous intermediate in the metabolic pathways . Lactic acid diffuses through the muscles and is transported to the liver by the bloodstream to participate in gluconeogenesis .
Iron is necessary for the production of hemoglobin. Iron-deficiency can lead to decreased production of hemoglobin and a microcytic, hypochromic anemia.
Binds to riboflavin hydrogenase, riboflavin kinase, and riboflavin synthase. Riboflavin is the precursor of flavin mononucleotide (FMN, riboflavin monophosphate) and flavin adenine dinucleotide (FAD). The antioxidant activity of riboflavin is principally derived from its role as a precursor of FAD and the role of this cofactor in the production of the antioxidant reduced glutathione. Reduced glutathione is the cofactor of the selenium-containing glutathione peroxidases among other things. The glutathione peroxidases are major antioxidant enzymes. Reduced glutathione is generated by the FAD-containing enzyme glutathione reductase.
It is thought that the mechanism of action of thiamine on endothelial cells is related to a reduction in intracellular protein glycation by redirecting the glycolytic flux. Thiamine is mainly the transport form of the vitamin, while the active forms are phosphorylated thiamine derivatives. Natural derivatives of thiamine phosphate, such as thiamine monophosphate (ThMP), thiamine diphosphate (ThDP), also sometimes called thiamine pyrophosphate (TPP), thiamine triphosphate (ThTP), and thiamine triphosphate (AThTP), that act as coenzymes in addition to their each unique biological functions.
Dosage
Vitakind Liv Vet dosage
19-50 year: 1,000 mg elemental Calcium Lactate per day.
>50 year: 1,200 mg elemental Calcium Lactate per day.
Iron-deficiency anaemia:
- Adult:60 mg bid up to 60 mg 4 times daily. Prevention: 60 mg daily.
- Child:Severe: 4-6 mg/kg/day in 3 divided doses; Mild to moderate: 3 mg/kg/day in 1-2 divided doses. Prevention: 1-2 mg/ kg/ day.
Should be taken on an empty stomach. Best taken on an empty stomach. May be taken with meals to reduce GI discomfort.
For treating low levels of riboflavin (riboflavin deficiency) in adults: 5-30 mg of riboflavin (Vitamin B2) daily in divided doses.
For preventing migraine headaches: 400 mg of riboflavin (Vitamin B2) per day. It may take up to three months to get best results.
For preventing cataracts: a daily dietary intake of approximately 2.6 mg of riboflavin (Vitamin B2) has been used. A combination of 3 mg of riboflavin (Vitamin B2) plus 40 mg of niacin daily has also been used.
The daily recommended dietary allowances (RDAs) of riboflavin (Vitamin B2) are:
- Infants 0-6 months: 0.3 mg
- Infants 7-12 months: 0.4 mg
- Children 1-3 years: 0.5 mg
- Children 4-8 years: 0.6 mg
- Children 9-13 years: 0.9 mg
- Men 14 years or older: 1.3 mg
- Women 14-18 years: 1 mg
- Women over 18 years: 1.1 mg
- Pregnant women: 1.4 mg
- Breastfeeding women: 1.6 mg
70 mg or 140 mg or 500 mg capsule should be taken 3 times daily as per the instruction of a physician. The medication should be continued until the relief of the symptoms according to the advice of a physician.
Prophylaxis: 3 to 10 mg daily.
Mild chronic deficiency: 10 to 25 mg daily.
Severe deficiency: 200 to 300 mg daily.
Side Effects
Gl discomfort e.g. nausea, vomiting, constipation; bradycardia, arrhythmias. Dry mouth, increased thirst or increased urination. Mental confusion, milk-alkali syndrome.
GI symptoms e.g. stomach cramping, constipation, nausea, vomiting, dark stools, heartburn, diarrhea, teeth staining, urine discoloration.
Get emergency medical help if you have signs of an allergic reaction: hives; difficult breathing; swelling of your face, lips, tongue, or throat. Riboflavin may cause your urine to turn a yellow-orange color, but this is usually not a harmful side effect.
A mild laxative effect has occasionally been observed.
Vitamin B1 does not have adverse effects when given orally, but in a few fatal cases anaphylactic reactions have occurred after intravenous administration of large doses (400 mg) in sensitive patients, especially children, and in one case following an intramuscular dose of 125 mg. The risk of such reactions increases with repeated administration of the drug by parenteral route. Transient mild soreness may occur at the site of intramuscular administration
Toxicity
The LDLo of calcium lactate pentahydrate following intravenous administration in mouse is 140 mg/kg .
Acute iron overdosage can be divided into four stages. In the first stage, which occurs up to six hours after ingestion, the principal symptoms are vomiting and diarrhea. Other symptoms include hypotension, tachycardia and CNS depression ranging from lethargy to coma. The second phase may occur at 6-24 hours after ingestion and is characterized by a temporary remission. In the third phase, gastrointestinal symptoms recur accompanied by shock, metabolic acidosis, coma, hepatic necrosis and jaundice, hypoglycemia, renal failure and pulmonary edema. The fourth phase may occur several weeks after ingestion and is characterized by gastrointestinal obstruction and liver damage. In a young child, 75 milligrams per kilogram is considered extremely dangerous. A dose of 30 milligrams per kilogram can lead to symptoms of toxicity. Estimates of a lethal dosage range from 180 milligrams per kilogram and upwards. A peak serum iron concentration of five micrograms or more per ml is associated with moderate to severe poisoning in many.
Thiamine toxicity is uncommon; as excesses are readily excreted, although long-term supplementation of amounts larger than 3 gram have been known to cause toxicity. Oral mouse LD50 = 8224 mg/kg, oral rat LD50 = 3710 mg/kg.
Precaution
Sarcoidosis; history of nephrolithiasis. Avoid IV admin of calcium in patients on cardiac glycosides. Increased risk of hypercalcaemia and hypercalciuria in hypoparathyroid patients receiving high doses of vitamin D. Caution when used in patients with history of kidney stones. Patients should be advised to administer vitamin D concurrently to optimise calcium absorption. Pregnancy.
Avoid in patients with peptic ulcer, enteritis, or ulcerative colitis and those who receive frequent blood transfusions. Not to be used in premature infants until the vitamin E stores (deficient at birth) are replenished. Avoid prolonged treatment (>6 mth) except in patients with continuous menorrhagia or bleeding.
Interaction
May reduce the efficacy of calcium-channel blockers. Concurrent admin of IV calcium salt with cardiac glycosides may lead to serious adverse events. Increased risk of hypercalcaemia when used with thiazide diuretics. May reduce absorption of tetracycline, alendronate, atenolol, iron, quinolone antibiotics, sodium fluoride and zinc.
Concurrent admin with antacids/ H2 antagonists may reduce absorption of iron. Chloramphenicol may delay response to iron. Iron may reduce the absorption of levodopa, methyldopa and penicillamine when given together. Absorption may be reduced when used with quinolones or tetracyclines. Concurrent admin with vitamin C may increase iron absorption.
Rate and extent of absorption may be affected by propantheline bromide.
No hazardous drug interactions have been reported. Vitamin B1 acts synergistically with other vitamins of the B-complex group and its potential for causing adverse effects is considerably reduced.
Volume of Distribution
The majority of calcium absorbed (99%) is stored in the skeleton and teeth for structural integrity .
Elimination Route
In order to be absorbed, calcium must be in its freely soluble form (Ca2+) or bound to a soluble organic molecule. Calcium absorption mainly occurs at the duodenum and proximal jejunum due to more acidic pH and the abundance of the calcium binding proteins . The mean calcium absorption is about 25% of calcium intake (range is 10 – 40%) in the small intestine, and is mediated by both passive diffusion and active transport .
The efficiency of absorption depends on the salt form, the amount administered, the dosing regimen and the size of iron stores. Subjects with normal iron stores absorb 10% to 35% of an iron dose. Those who are iron deficient may absorb up to 95% of an iron dose.
Vitamin B2 is readily absorbed from the upper gastrointestinal tract.
Absorbed mainly from duodenum, by both active and passive processes
Half Life
No pharmacokinetic data available.
66-84 minutes
Clearance
No pharmacokinetic data available.
Elimination Route
Following oral administration to a human volunteer, 20 to 30% of a dose of lactic acid of up to 3000 mg was excreted via the urine during a period of 14 hours .
Pregnancy & Breastfeeding use
Pregnancy Category-C. Animal reproduction studies have shown an adverse effect on the fetus and there are no adequate and well-controlled studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks
Pregnancy Category- A. Adequate and well-controlled human studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).
Riboflavin is LIKELY SAFE for pregnant or breast-feeding women when taken in the amounts recommended. The recommended amounts are 1.4 mg per day for pregnant women and 1.6 mg per day in breast-feeding women. Riboflavin is POSSIBLY SAFE when taken by mouth in larger doses, short-term. Some research shows that riboflavin is safe when taken at a dose of 15 mg once every 2 weeks for 10 weeks.
No experience is available about the use of Silymarin 70 mg or 140 mg during pregnancy and lactation. Therefore, if needed Silymarin 70 mg or 140 mg should be taken with caution according to the physician’s advice.
The drug may be given safely to neonates, children, pregnant and lactating women and elderly patients.
Contraindication
Conditions associated with hypercalcaemia and hypercalciuria.
Haemochromatosis, haemolytic anemia.
No adequate data of investigations are available about the use of this drug in children. Therefore, it should be used in children under 12 years of age with caution under the direct supervision of a physician.
There is no absolute contraindication but the risk of anaphylaxis is increased by repeated parenteral administration. Mild allergic phenomena, such as sneezing or mild asthma are warning signs that further may give rise to anaphylactic shock. To avoid this possibility it is advisable to start a second course of injection with a dose considerably lower than that previously used. Because of the above, vitamin B1 injection should not be given intravenously except in the case of comatose patients. Once thiamine deficiency is corrected there is no need for parenteral administration or for the administration of amounts in excess of daily requirement.
Acute Overdose
Overdose may lead to severe iron toxicity, espcially in children.
Storage Condition
Store at 15-30° C.
To be stored in a cool and dry place, away from direct sunlight. Keep the medicine out of reach of children.
Thiamine injection should be protected from light and moisture.
Innovators Monograph
You find simplified version here Vitakind Liv Vet