Vivavit L Uses, Dosage, Side Effects and more

Vivavit L Uses, Dosage, Side Effects, Food Interaction and all others data.

Beta-carotene, with the molecular formula C40H56, belongs to the group of carotenoids consisting of isoprene units. The presence of long chains of conjugated double bonds donates beta-carotene with specific colors. It is the most abundant form of carotenoid and it is a precursor of the vitamin A. Beta-carotene is composed of two retinyl groups. It is an antioxidant that can be found in yellow, orange and green leafy vegetables and fruits. Under the FDA, beta-carotene is considered as a generally recognized as safe substance (GRAS).

Oral administration of beta-carotene increases the serum concentration of beta-carotene by 60% but it does not change the concentration found in the heart, liver or kidneys. In vitro studies in hepatocytes have shown that beta-carotene ameliorates oxidative stress, enhances antioxidant activity and decreases apoptosis.

Other than the antioxidant activities, some other actions have been correlated to beta-carotene. It is thought to have detoxifying properties, as well as to help increase resistance to inflammation and infection and increase immune response and enhance RNA production.

Lutein is an xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll (an excited form of chlorophyll), which is overproduced at very high light levels, during photosynthesis.

Lutein was found to be present in a concentrated area of the macula, a small area of the retina responsible for central vision. The hypothesis for the natural concentration is that lutein helps protect from oxidative stress and high-energy light. Several studies show that an increase in macula pigmentation decreases the risk for eye diseases such as Age-related Macular Degeneration (AMD).

Lycopene is a naturally occuring red carotenoid pigment that is responsible in red to pink colors seen in tomatoes, pink grapefruit, and other foods . Having a chemical formula of C40H56, lycopene is a tetraterpene assembled from eight isoprene units that are solely composed of carbon and hydrogen. Lycophene may undergo extensive isomerization that allows 1056 theoretical cis-trans configurations; however the all-trans configuration of lycopene is the most predominant isomer found in foods that gives the red hue. Lycopene is a non-essential human nutrient that is classified as a non-provitamin A carotenoid pigment since it lacks a terminal beta ionone ring and does not mediate vitamin A activity. However lycophene is a potent antioxidant molecule that scavenges reactive oxygen species (ROS) singlet oxygen. Tomato lycopene extract is used as a color additive in food products.

Trade Name Vivavit L
Generic Beta Carotene + Grape Seed Extract + Lutein + Lycopene + Selenium Dioxide + Zinc Sulphate
Weight 5.17mg
Type Capsule
Therapeutic Class
Manufacturer Healthy India Pharmaceuticals
Available Country India
Last Updated: January 7, 2025 at 1:49 am
Vivavit L
Vivavit L

Uses

Beta carotene is a vitamin A precursor found in various nutritional supplements and health products.

Beta-carotene is FDA approved to be used as a nutrient supplement and to be even added in infant formula as a source of vitamin A. It is also approved to be used as a color additive for food products, drugs (with the label of "only as a color additive") and cosmetics.

It is used commonly for the reduction of photosensitivity in patients with erythropoietic protoporphyria and other photosensitivity diseases.

Xanthophylls are taken for nutritional supplementation, and also for treating dietary shortage or imbalance.

Lycopene is an ingredient found in a variety of supplements and vitamins.

Vivavit L is also used to associated treatment for these conditions: Deficiency, Vitamin A, Nutritional supplementationFolate supplementation therapy, Mineral supplementation, Nutritional supplementation, Vitamin supplementationNutritional supplementation

How Vivavit L works

Beta-carotene is an antioxidant that presents significant efficacy against the reactive oxygen species singlet oxygen. Beta-carotene acts as a scavenger of lipophilic radicals within the membranes of every cell compartments. It also presents an oxidative modification of LDL. The presence of long chains of conjugated double bonds is responsible for its antioxidative properties by allowing beta-carotene to chelate oxygen-free radicals and dissipate their energy. The chelation of free radicals inhibits the peroxidation of lipids.

The effect of beta-carotene in the immune response is thought to be related to the direct effect on the thymus which increases the production of immune cells.

Xanthophylls have antioxidant activity and react with active oxygen species, producing biologically active degradation products. They also can inhibit peroxidation of membrane phospholipids and reduce lipofuscin formation, both of which contribute to their antioxidant properties. Lutein is naturally present in the macula of the human retina. It filters out potentially phototoxic blue light and near-ultraviolet radiation from the macula. The protective effect is due in part, to the reactive oxygen species quenching ability of these carotenoids. Lutein is more stable to decomposition by pro-oxidants than are other carotenoids such as beta-carotene and lycopene. Lutein is abundant in the region surrounding the fovea, and lutein is the predominant pigment at the outermost periphery of the macula. Zeaxanthin, which is fully conjugated (lutein is not), may offer somewhat better protection than lutein against phototoxic damage caused by blue and near-ultraviolet light radiation. Lutein is one of only two carotenoids that have been identified in the human lens, may be protective against age-related increases in lens density and cataract formation. Again, the possible protection afforded by lutein may be accounted for, in part, by its reactive oxygen species scavenging abilities. Carotenoids also provide protection from cancer. One of the mechanisms of this is by increasing the expression of the protein connexin-43, thereby stimulating gap junctional communication and preventing unrestrained cell proliferation.

Toxicity

Beta-carotene is not toxic but the high and constant administration of this substance can translate into skin yellow coloration. Some reports have indicated that administration of high and periodic doses of beta-carotene are correlated to the increase in cancer incidence. This risk seems to be very elevated in the case of smokers. The registered LD50 of beta-carotene is >5000 mg/kg.

Volume of Distribution

No pharmacokinetic studies have been performed regarding the volume of distribution of beta-carotene.

Elimination Route

After administration of beta-carotene, some of the administered dose is absorbed into the circulatory system unchanged and stored in the fat tissue. The coadministration of beta-carotene and a high-fat content diet is correlated to a better absorption of beta-carotene. The absorption is also dependent on the isomeric form of the molecule where the cis conformation seems to present a higher bioavailability. The absorption of beta-carotene is thought to be performed in 6-7 hours.

The reported AUC of beta-carotene when administered orally from 0 to 440 hours after initial administration was reported to be 26.3 mcg.h/L. The maximal concentration of beta-carotene is attained in a dual pharmacokinetic profile after 6 hours and again after 32 hours with a concentration of 0.58 micromol/L.

Half Life

The apparent half-life of beta-carotene is of 6-11 days after initial administration.

Clearance

The clearance rate of beta-carotene administered orally is 0.68 nmol/L each hour.

Elimination Route

The unabsorbed carotene is excreted in feces. It is also excreted in feces and urine as metabolites. The consumption of dietary fiber can increase the fecal excretion of fats and other fat-soluble compounds such as beta-carotene.

Innovators Monograph


*** Taking medicines without doctor's advice can cause long-term problems.
Share