Vozox Mr
Vozox Mr Uses, Dosage, Side Effects, Food Interaction and all others data.
Diclofenac Eye Drops contains Diclofenac Sodium, a potent non-steroidal anti-inflammatory drug with analgesic property. Diclofenac Sodium produces anti-inflammatory effect by inhibiting cyclooxygenase activity with a reduction in the tissue prostaglandin ( such as PgE2 and Pg F2α) .
Diclofenac reduces inflammation and by extension reduces nociceptive pain and combats fever. It also increases the risk of developing a gastrointestinal ulcer by inhibiting the production of protective mucus in the stomach.
Tizanidine is a short-acting drug for the management of spasticity. Tizanidine is an agonist at α2-adrenergic receptor sites and presumably reduces spasticity by increasing presynaptic inhibition of motor neurons. In animal models, tizanidine has no direct effect on skeletal muscle fibers or the neuromuscular junction, and no major effect on monosynaptic spinal reflexes. The effects of tizanidine are greatest on polysynaptic pathways. The overall effect of these actions is thought to reduce facilitation of spinal motor neurons.
A note on spasticity
Spasticity is an increase in muscle accompanied by uncontrolled, repetitive contractions of skeletal muscles which are involuntary.The patient suffering from muscle spasticity may have reduced mobility and high levels of pain, contributing to poor quality of life and problems performing activities of personal hygiene and care .
General effects
Trade Name | Vozox Mr |
Generic | Diclofenac + Tizanidine |
Type | Tablet |
Therapeutic Class | |
Manufacturer | Macmillon Pharmaceuticals |
Available Country | India |
Last Updated: | September 19, 2023 at 7:00 am |
Uses
Diclofenac Sodium ophthalmic preparation is used for-
- Inhibition of miosis during cataract surgery.
- Post-operative inflammation after cataract surgery and other ocular surgical procedures.
- Pre-operative and post-operative prevention of cystoid macular edema (CME) associated with lens extraction & intraocular lens implantation.
- Post-traumatic inflammation in penetrating and non- penetrating wounds (as an adjuvant to local anti-infective therapy).
- Non-infected chronic conjunctivitis, keratoconjunctivitis.
It is used in the symptomatic treatment of painful muscle spasm associated with musculoskeletal conditions and as an adjunct in the management of spasticity associated with multiple sclerosis or spinal cord disorders.
Vozox Mr is also used to associated treatment for these conditions: Actinic Keratosis (AK), Acute Arthritis, Acute Gouty Arthritis, Acute Migraine, Acute Musculoskeletal Pain, Ankylosing Spondylitis (AS), Common Cold, Fever, Gouty Arthritis, Inflammation, Inflammatory Disease of the Oral Cavity, Inflammatory Disease of the throat, Inflammatory Reaction of the Nerve, Joint Pain, Juvenile Idiopathic Arthritis (JIA), Menstrual Distress (Dysmenorrhea), Muscle Inflammation, Ocular Inflammation, Operation site inflammation, Osteoarthritis (OA), Osteoarthritis of the Knee, Pain, Pain, Nerve, Pericarditis, Photophobia, Postoperative pain, Primary Dysmenorrhoea, Radicular Pain, Rheumatic Pain, Rheumatism, Rheumatoid Arthritis, Seasonal Allergic Conjunctivitis, Soreness, Muscle, Spinal pain, Tendon pain, Vertebral column pain, Acute Musculoskeletal injury, Acute, moderate, severe Pain, Inflammatory, Localized soft tissue rheumatism, Mild to moderate joint pain, Mild to moderate pain, Minor pain, Perioperative miosisAcute Low Back Pain, Drug Withdrawal Headache, Insomnia, Migraine, Pain, Seizures, Spasticity, Muscle, Withdrawal From Addictive Substance; Detoxification
How Vozox Mr works
Diclofenac inhibits cyclooxygenase-1 and -2, the enzymes responsible for production of prostaglandin (PG) G2 which is the precursor to other PGs. These molecules have broad activity in pain and inflammation and the inhibition of their production is the common mechanism linking each effect of diclofenac.
PGE2 is the primary PG involved in modulation of nociception. It mediates peripheral sensitization through a variety of effects. PGE2 activates the Gq-coupled EP1 receptor leading to increased activity of the inositol trisphosphate/phospholipase C pathway. Activation of this pathway releases intracellular stores of calcium which directly reduces action potential threshold and activates protein kinase C (PKC) which contributes to several indirect mechanisms. PGE2 also activates the EP4 receptor, coupled to Gs, which activates the adenylyl cyclase/protein kinase A (AC/PKA) signaling pathway. PKA and PKC both contribute to the potentiation of transient receptor potential cation channel subfamily V member 1 (TRPV1) potentiation, which increases sensitivity to heat stimuli. They also activate tetrodotoxin-resistant sodium channels and inhibit inward potassium currents. PKA further contributes to the activation of the P2X3 purine receptor and sensitization of T-type calcium channels. The activation and sensitization of depolarizing ion channels and inhibition of inward potassium currents serve to reduce the intensity of stimulus necessary to generate action potentials in nociceptive sensory afferents. PGE2 act via EP3 to increase sensitivity to bradykinin and via EP2 to further increase heat sensitivity. Central sensitization occurs in the dorsal horn of the spinal cord and is mediated by the EP2 receptor which couples to Gs. Pre-synaptically, this receptor increases the release of pro-nociceptive neurotransmitters glutamate, CGRP, and substance P. Post-synaptically it increases the activity of AMPA and NMDA receptors and produces inhibition of inhibitory glycinergic neurons. Together these lead to a reduced threshold of activating, allowing low intensity stimuli to generate pain signals. PGI2 is known to play a role via its Gs-coupled IP receptor although the magnitude of its contribution varies. It has been proposed to be of greater importance in painful inflammatory conditions such as arthritis. By limiting sensitization, both peripheral and central, via these pathways NSAIDs can effectively reduce inflammatory pain.
PGI2 and PGE2 contribute to acute inflammation via their IP and EP2 receptors. Similarly to β adrenergic receptors these are Gs-coupled and mediate vasodilation through the AC/PKA pathway. PGE2 also contributes by increasing leukocyte adhesion to the endothelium and attracts the cells to the site of injury. PGD2 plays a role in the activation of endothelial cell release of cytokines through its DP1 receptor. PGI2 and PGE2 modulate T-helper cell activation and differentiation through IP, EP2, and EP4 receptors which is believed to be an important activity in the pathology of arthritic conditions. By limiting the production of these PGs at the site of injury, NSAIDs can reduce inflammation.
PGE2 can cross the blood-brain barrier and act on excitatory Gq EP3 receptors on thermoregulatory neurons in the hypothalamus. This activation triggers an increase in heat-generation and a reduction in heat-loss to produce a fever. NSAIDs prevent the generation of PGE2 thereby reducing the activity of these neurons.
Tizanidine reduces spasticity by causing presynaptic inhibition of motor neurons via agonist actions at Alpha-2 adrenergic receptor sites. This drug is centrally acting and leads to a reduction in the release of excitatory amino acids like glutamate and aspartate, which cause neuronal firing that leads to muscle spasm. The above reduction and excitatory neurotransmitter release results in presynaptic inhibition of motor neurons. The strongest effect of tizanidine has been shown to occur on spinal polysynaptic pathways. The anti-nociceptive and anticonvulsant activities of tizanidine may also be attributed to agonist action on Alpha-2 receptors. Tizanidine also binds with weaker affinity to the Alpha-1 receptors, explaining its slight and temporary effect on the cardiovascular system .
Dosage
Vozox Mr dosage
Ophthalmic (Adult)-
- Postoperative ocular inflammation: Instill into the appropriate eye 4 times daily starting 24 hr after surgery for up to 28 days.
- Inflammation and discomfort after strabismus surgery: Instill 1 drop 4 times daily for the 1st wk; then tid in the 2nd wk, bid in the 3rd wk, and as required for the 4th wk.
- Pain and discomfort after radial keratotomy: Instill 1 drop before surgery followed by 1 drop immediately after surgery, and then 1 drop 4 times daily for up to 2 days.
- Pain after accidental trauma: Instill 1 drop 4 times daily for up to 2 days.
- Control of inflammation after argon laser trabeculoplasty:Instill 1 drop 4 times during the 2 hr before procedure followed by 1 drop 4 times daily, up to 7 days after procedure.
- Prophylaxis of intra-operative miosis: Instill into appropriate eye 4 times w/in 2 hr before surgery.
- Post-photorefractive keratectomy pain:Instill into the affected eye twice, an hr before surgery, then 1 drop twice at 5-min intervals immediately after surgery, then every 2-5 hr while awake for up to 24 hr.
- Seasonal allergic conjunctivitis:Instill 1 drop before surgery followed by 1 drop immediately after surgery, and then 1 drop 4 times daily for up to 2 days.
The usual initial daily dose is 2 mg as a single dose. The daily dose may be increased thereafter according to response in steps of 2 mg at intervals of at least 3 to 4 days, usually up to 24 mg daily given in 3 to 4 divided doses. The maximum recommended dose is 36 mg daily.
Side Effects
Mild to moderate burning sensation in 5-15% patients which is transient in nature and almost never necessitated discontinuation of treatment. Other less common side-effects are sensitivity to light, bad taste, feeling of pressure, allergic reactions etc.
Tizanidine Hydrochloride may cause drowsiness, fatigue, dizziness, dry mouth, nausea, gastrointestinal disturbances, hypotension. Bradycardia, insomnia, hallucinations and altered liver enzymes, and rarely acute hepatitis have also been reported.
Toxicity
Symptoms of overdose include lethargy, drowsiness, nausea, vomiting, and epigastric pain, and gastrointestinal bleeding. Hypertension, acute renal failure, respiratory depression and coma occur rarely. In case of overdose, provide supportive care and consider inducing emesis and administering activated charcoal if overdose occurred less than 4 hours prior.
LD50 information
Oral LD50 (rat): 414 mg/kg; Subcutaneous LD50 (rat): 282 mg/kg; Oral LD50 (mouse): 235 mg/kg
Use in pregnancy
Animal studies have determined that this drug causes fetal harm . Studies have not been performed in humans, and it is advisable to ensure that tizanidine use in pregnant women should be reserved for cases in which possible benefit clearly outweighs the possible risk to mother and unborn child .
Use in breastfeeding
In studies of rat models, this tizanidine was found excreted in the breastmilk with a milk-to-blood ratio of 1.8:1 . In young nursing rats, abnormal results were obtained in tests indicative of central nervous system function. Various developmental changes that may have been attributable to the drug were observed. It is unknown whether tizanidine is excreted in human milk. It is a lipid-soluble drug, however, and likely to be excreted into breast milk .
Carcinogenesis and mutagenesis
No signs of carcinogenicity were observed in two dietary studies performed in rodent models. Tizanidine was given to mice for 78 weeks at doses reaching a maximum 16 mg/kg (equivalent to twice the maximum recommended human dose). In addition, the drug was given to rats for 104 weeks at doses reaching 9 mg/kg (equivalent to 2.5 times the maximum recommended human dose). There was a lack of a statistically significant increase in the occurrence of tumors in either study group .
Tizanidine was not found to be mutagenic or clastogenic in several laboratory essays, including the bacterial Ames test, the mammalian gene mutation test, in addition to the chromosomal aberration test in Chinese hamster cells and several other assays .
Precaution
Diclofenac eye drops may mask the signs of infection. So physicians should be alert to the development of infections in patients receiving the drug. During prolonged use, it is recommended that physicians conduct periodic examinations of the eye, including measurement of the intraocular pressure. Contact lenses should not be worn during treatment.
Patients with impaired kidney or liver function; when patients drive a vehicle or operate machinery.
Interaction
No drug interaction is reported. There should be at least 5 minutes interval when another ophthalmic solution (e.g., steroid) is given.
Alcohol or other CNS depressants may enhance the CNS effects of Tizanidine. There may be an additive hypotensive effect when Tizanidine is used in patients receiving antihypertensive therapy.
Volume of Distribution
Diclofenac has a total volume of distribution of 5-10 L or 0.1-0.2 L/kg. The volume of the central compartment is 0.04 L/kg. Diclofenac distributes to the synovial fluid reaching peak concentration 2-4h after administration. There is limited crossing of the blood brain barrier and cerebrospinal fluid concentrations only reach 8.22% of plasma concentrations. Doses of 50 mg delivered via intramuscular injection produced no detectable diclofenac concentrations in breast milk, however metabolite concentrations were not investigated. Diclofenac has been shown to cross the placenta in mice and rats but human data is unavailable.
Extensively distributed throughout the body. The average steady-state volume of distribution is 2.4 L/kg .
Elimination Route
Diclofenac is completely absorbed from the GI tract but likely undergoes significant first pass metabolism with only 60% of the drug reaching systemic circulation unchanged . Many topical formulations are absorbed percutaneous and produce clinically significant plasma concentrations. Absorption is dose proportional over the range of 25-150 mg. Tmax varies between formulations with the oral solution reaching peak plasma concentrations in 10-40min, the enteric coated tablet in 1.5-2h, and the sustained- and extended-release formulations prolonging Tmax even further. Administration with food has no significant effects on AUC but does delay Tmax to 2.5-12h.
This drug undergoes significant first-pass metabolism. After the administration of an oral dose, tizanidine is mostly absorbed. The absolute oral bioavailability of tizanidine is measured to be about 40% .
Effect of food on absorption
Food has been shown to increase absorption for both the tablets and capsules. The increase in absorption with the tablet (about 30%) was noticeably higher than the capsule (~10%). When the capsule and tablet were administered with food, the amount absorbed from the capsule was about 80% of the amount absorbed from the tablet . It is therefore advisable to take this drug with food for increased absorption, especially in tablet form.
Half Life
The terminal half-life of diclofenac is approximately 2 h, however the apparent half-life including all metabolites is 25.8-33 h.
Approximately 2.5 hours .
Clearance
Diclofenac has a plasma clearance 16 L/h.
A note on renal impairment
Tizanidine clearance is found to be decreased by more than 50% in elderly patients with renal insufficiency (creatinine clearance < 25 mL/min) compared to healthy elderly subjects; this would be expected to lead to a longer duration of clinical effect. This drug should be used with caution in patients with renal impairment .
Elimination Route
Diclofenac is mainly eliminated via metabolism. Of the total dose, 60-70% is eliminated in the urine and 30% is eliminated in the feces. No significant enterohepatic recycling occurs.
This drug is mainly eliminated by the kidney .
Pregnancy & Breastfeeding use
The safety of Diclofenac eye drops in pregnancy & lactation has not been established and its use therefore is not recommended unless the potential benefit to the mother outweighs the possible risk to the child.
Tizanidine has no teratogenic effects in rats and rabbits. As there have been no controlled studies in pregnant women, it should not be used during pregnancy unless the benefit clearly outweighs the risk. Although only small amounts of Tizanidine are excreted in animal milk, lactating women should not take Tizanidine.
Contraindication
Hypersensitivity to any of the components Like other non steroidal anti-inflammatory agents, Diclofenac Sodium eye drops is contraindicated in patients in whom attacks of asthma, urticaria or acute rhinitis have been observed following application of acetyl salicylic acid or other cyclo-oxygenase inhibitors
Tizanidine Hydrochloride is contraindicated to the patients who have known hypersensitivity to this drug and in case of severe hepatic impairment.
Acute Overdose
Accidental ingestion of Diclofenac Sodium presents virtually no risk of unwanted effects, since one 5 ml bottle of eye drop solution contains only 5 mg of Diclofenac Sodium, which is equivalent to about 3% of the recommended maximum oral dose for adults.
Children: Experience in children is limited and the use of Tizanidine in this patient group is not recommended.
Elderly: Renal clearance in the elderly may in some cases be significantly decreased. Caution is therefore indicated when using in elderly patients.
Storage Condition
Close the bottle immediately after use. Do not use for more than four weeks after opening. Store at room temperature.
Store in a cool & dry place, protected from light & moisture. Do not freeze. Keep all medicines out of the reach of children.
Innovators Monograph
You find simplified version here Vozox Mr