Zenheyl
Zenheyl Uses, Dosage, Side Effects, Food Interaction and all others data.
Formoterol fumarate is a long-acting β2-adrenergic receptor agonist (β2-agonist). Inhaled formoterol fumarate acts locally in the lung as a bronchodilator. In vitro studies have shown that formoterol has more than 200-fold greater agonist activity at β2-receptors than at β1-receptors. Although β2-receptors are the predominant adrenergic receptors in bronchial smooth muscle and β1-receptors are the predominant receptors in the heart, there are also β2-receptors in the human heart comprising 10%-50% of the total beta-adrenergic receptors. The precise function of these receptors has not been established, but they raise the possibility that even highly selective β2-agonists may have cardiac effects.
The pharmacologic effects of β2-adrenoceptor agonist drugs, including formoterol, are at least in part attributable to stimulation of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3', 5'-adenosine monophosphate (cyclic AMP). Increased cyclic AMP levels cause relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells.
In vitro tests show that formoterol is an inhibitor of the release of mast cell mediators, such as histamine and leukotrienes, from the human lung. Formoterol also inhibits histamine-induced plasma albumin extravasation in anesthetized guinea pigs and inhibits allergen-induced eosinophil influx in dogs with airway hyper-responsiveness. The relevance of these in vitro and animal findings to humans is unknown.
Formoterol works locally in the lungs as a bronchodilator, relaxing smooth muscle and opening up the airways. It possesses both a rapid onset of action (approximately 2-3 minutes) and a long duration of action (up to 12 hours). The use of long-acting beta-agonists (LABAs), such as formoterol, without concomitant inhaled corticosteroids in asthmatic patients should be avoided, as LABA monotherapy has been associated with an increased risk of asthma-related death.
Mometasone furoate is a corticosteroid drug that can be used for the treatment of asthma, rhinitis, and certain skin conditions. It has a glucocorticoid receptor binding affinity 22 times stronger than dexamethasone and higher than many other corticosteroids as well. Mometasone furoate is formulated as a dry powder inhaler, nasal spray, and ointment for its different indications.
Mometasone is a synthetic corticosteroid with an affinity for glucocorticoid receptors 22 times higher than that of dexamethasone. Mometasone furoate also has a lower affinity to mineralocorticoid receptors than natural corticosteroids, making it more selective in its action. Mometasone furoate diffuses across cell membranes to activate pathways responsible for reducing inflammation.
Trade Name | Zenheyl |
Generic | Formoterol + Mometasone Furoate |
Type | |
Therapeutic Class | |
Manufacturer | |
Available Country | Russia |
Last Updated: | September 19, 2023 at 7:00 am |
Uses
Treatment of Asthma: Formoterol Fumarate is used for the treatment of asthma and in the prevention of bronchospasm only as concomitant therapy with a long-term asthma control medication, such as an inhaled corticosteroid, in adults and children 5 years of age and older with reversible obstructive airways disease, including patients with symptoms of nocturnal asthma.
Prevention of Exercise-Induced Bronchospasm: Formoterol Fumarate is also used for the acute prevention of exercise-induced bronchospasm in adults and children 5 years of age and older, when administered on an occasional, as-needed basis. Use of Formoterol Fumarate as a single agent for the prevention of exercise-induced bronchospasm may be clinically used for patients who do not have persistent asthma. In patients with persistent asthma, use of Formoterol Fumarate for the prevention of exercise-induced bronchospasm may be clinically used, but the treatment of asthma should include a long-term asthma control medication, such as an inhaled corticosteroid.
Maintenance Treatment of Chronic Obstructive Pulmonary Disease: Formoterol Fumarate is used for the long-term, twice daily (morning and evening) administration in the maintenance treatment of bronchoconstriction in patients with Chronic Obstructive Pulmonary Disease including chronic bronchitis and emphysema.
Mometasone furoate is a corticosteroid used to treat asthma, allergic rhinitis, nasal congestion, nasal polyps, dermatitis, and pruritus.
There are 3 formulations of mometasone furoate with various indications. The inhaler is indicated for prophylaxis of asthma in patients ≥4 years. The nasal spray is indicated for treating nasal symptoms of allergic rhinitis in patients ≥2 years, treating symptoms of nasal congestion from seasonal allergic rhinitis in patients ≥2 years, treating nasal polyps in patients ≥18 years, and prophylaxis of seasonal allergic rhinitis in patients ≥12 years. The ointment is indicated for symptomatic treatment of dermatitis and pruritis in patients ≥2 years.
Zenheyl is also used to associated treatment for these conditions: Asthma, Bronchial Asthma, Bronchoconstriction, Chronic Obstructive Pulmonary Disease (COPD), Exercise-Induced Bronchospasm, Moderate to Severe COPDAllergic Rhinitis (AR), Asthma, Dermatitis, Dermatitis, Eczematous caused by superficial Fungal skin infection, Moderate to Severe Plaque Psoriasis, Polyps, Nasal, Pruritus, Psoriasis, Psoriasis, Moderate to Severe, Seasonal Allergies, Skin Diseases, Eczematous, Skin Infections
How Zenheyl works
Formoterol is a relatively selective long-acting agonist of beta2-adrenergic receptors, although it does carry some degree of activity at beta1 and beta3 receptors. Beta2 receptors are found predominantly in bronchial smooth muscle (with a relatively minor amount found in cardiac tissue) whereas beta1 receptors are the predominant adrenergic receptors found in the heart - for this reason, selectivity for beta2 receptors is desirable in the treatment of pulmonary diseases such as COPD and asthma. Formoterol has demonstrated an approximately 200-fold greater activity at beta2 receptors over beta1 receptors.
On a molecular level, activation of beta receptors by agonists like formoterol stimulates intracellular adenylyl cyclase, an enzyme responsible for the conversion of ATP to cyclic AMP (cAMP). The increased levels of cAMP in bronchial smooth muscle tissue result in relaxation of these muscles and subsequent dilation of the airways, as well as inhibition of the release of hypersensitivity mediators (e.g. histamine, leukotrienes) from culprit cells, especially mast cells.
In asthma, mometasone is believed to inhibit mast cells, eosinophils, basophils, and lymphocytes. There is also evidence of inhibition of histamine, leukotrienes, and cytokines.
Corticosteroids diffuse across cell membranes into the cytosol of cells where they bind to glucocorticoid receptors to produce their activity. Mometasone furoate has a particularly high receptor affinity compare to other corticosteroids, 22 times higher than that of dexamethasone. Mometasone furoate binding to a glucocorticoid receptor causes conformational changes in the receptor, separation from chaperones, and the receptor moves to the nucleus. Once at the nucleus, receptors dimerize and bind to a DNA sequence known as the glucocorticoid response element which either increases expression of anti-inflammatory molecules or inhibits expression of pro-inflammatory molecules (such as interleukins 4 and 5). Mometasone furoate also reduces inflammation by blocking transcription factors such as activator-protein-1 and nuclear factor kappa B (NF-kappaB).
Dosage
Zenheyl dosage
Inhalation Acute bronchospasm; Reversible airways obstruction:
- As inhalation cap: 12 mcg twice daily, up to 24 meg twice daily in severe cases.
- As dry powder inhaler: 6 or 12 mcg 1 -2 times/day, up to to 24 mcg twice daily in sever cases. As metered doses from aerosol inhaler: 12 or 24 mcg twice daily.
Prevention of exercise-induced bronchospasm: 6 or 12 mcg at least 15 mins before exercise. Additional doses may be given 12 hr later.
Side Effects
Common side effects are Viral infection, Bronchitis, Chest infection, Dyspnea , Chest pain, Tremor, Dizziness, Angina, Arrhythmias, Hypo/hypertension, Tachycardia, Hypokalemia, Hyperglycemia, Metabolic acidosis, Headache, Insomnia, Paradoxical bronchospasm, Severe asthma exacerbation
Toxicity
The oral LD50 in rats is 3130 mg/kg.
Symptoms of overdose are likely consistent with formoterol's adverse effect profile (i.e. consistent with excessive beta-adrenergic stimulation) and may include angina, hyper or hypotension, tachycardia, arrhythmia, nervousness, headache, tremor, seizures, dry mouth, etc. Patients may experience laboratory abnormalities including hypokalemia, hyperglycemia, and metabolic acidosis. Treatment of overdosage should consist of symptomatic and supportive therapy, with a particular focus on cardiac monitoring. Consider the use of a cardioselective beta-adrenergic blocker to oppose excessive adrenergic stimulation if clinically appropriate.
Overdose with a mometasone furoate inhaler may occur with chronic overuse. Symptoms of chronic overuse may present as hypercorticism and adrenal suppression, and patients may not require any more treatment than monitoring.
In animal studies of pregnancy, some fetal toxic effects were seen at or above the maximum recommended human dose, though rodents are more sensitive to these effects than humans. The benefits and risks of use should be considered in pregnant patients
It is unknown if mometasone furoate is excreted in breast milk but other corticosteroids are and therefore caution should be exercised when administering to nursing mothers.
Safety and effectiveness in pediatric populations has been established through clinical trials, though there may be a reduction in expected growth of about 1cm per year depending on the dose and duration of treatment. Pediatric patients should be titrated to the lowest effective dose for mometasone furoate inhalers.
A trial of geriatric patients showed no difference in safety or efficacy compared to younger patients, however patients of an even greater age may still be more sensitive to mometasone furoate.
The use of a mometasone furoate inhaler in moderate or severe hepatic impairment rarely leads to detectable plasma concentrations though caution may be prudent with increasing degrees of severity.
The effects of mometasone furoate in renal impairment, and across gender and race have not been studied.
Precaution
Thyrotoxicosis; severe CV disorders e.g. ischaemic heart disease, tachyarrhythmias or severe heart burn; prolonged QT-interval. DM; pregnancy; lactation; children, do not initiate or increase the dose during an exacerbation. May produce paradoxical bronchospasm.
Interaction
Concomitant treatment with xanthine derivatives, steroids or diuretics may potentiate a possible hypokalaemic effect of beta-agonists. Increased susceptibility to cardiac arrhythmias in patients treated with digitalis. Concomitant use with quinidine, disopyramide, procainamide, phenothiazines, antihistamines, MAOI or TCAs can prolong the QT-interval and increase the risk of ventricular arrhythmias. L-dopa, L-thyroxine, oxytocin and alcohol can impair cardiac tolerance towards beta2-sympathomimetics. beta-adrenergic blockers can inhibit the effect of formoterol. Increased risk of arrhythmias in patients receiving concomitant anaesthesia with halogenated hydrocarbons.
Volume of Distribution
Steady state volume of distribution of 152L.
Elimination Route
The pulmonary bioavailability of formoterol has been estimated to be about 43% of the delivered dose, while the total systemic bioavailability is approximately 60% of the delivered dose (as systemic bioavailability accounts for absorption in the gut).
Formoterol is rapidly absorbed into plasma following inhalation. In healthy adults, formoterol Tmax ranged from 0.167 to 0.5 hours. Following a single dose of 10 mcg, Cmax and AUC were 22 pmol/L and 81 pmol.h/L, respectively. In asthmatic adult patients, Tmax ranged from 0.58 to 1.97 hours. Following single-dose administration of 10mcg, Cmax and AUC0-12h were 22 pmol/L and 125 pmol.h/L, respectively; following multiple-dose administration of 10 mcg, Cmax and AUC0-12h were 41 pmol/L and 226 pmol.h/L, respectively. Absorption appears to be proportional to dose across standard dosing ranges.
["\"Official drug label\" href=\"#label-reference","Label<\/a> but studies of repeat doses of inhaled corticosteroids suggest a bioavailability of 11%. The 0.1% ointment may have a bioavailability of 0.7%.<\/p>\n"]Half Life
The average terminal elimination half-life of formoterol following inhalation is 7-10 hours, depending on the formulation given. The plasma half-life of formoterol has been estimated to be 3.4 hours following oral administration and 1.7-2.3 hours following inhalation.
The terminal half life of an inhaled dose is approximately 5 hours though it has been reported as 5.8 hours by other sources.
Clearance
Renal clearance of formoterol following inhalation is approximately 157 mL/min.
The clearance rate of mometasone furoate is not readily available, though it may be close to 90L/h.
Elimination Route
Elimination differs depending on the route and formulation administered. Following oral administration in 2 healthy subjects, approximately 59-62% and 32-34% of an administered dose was eliminated in the urine and feces, respectively. Another study which attempted to mimic inhalation via combined intravenous/oral administration noted approximately 62% of the administered dose in the urine and 24% in the feces. Following inhalation in patients with asthma, approximately 10% and 15-18% of the administered dose was excreted in urine as unchanged parent drug and direct formoterol glucuronides, respectively, and corresponding values in patients with COPD were 7% and 6-9%, respectively.
For an inhaled dose, approximately 74% is excreted in the feces and 8% is excreted in the urine.
Pregnancy & Breastfeeding use
Pregnancy Category-C. Animal reproduction studies have shown an adverse effect on the fetus and there are no adequate and well-controlled studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks
Lactation: Not known if it is excreted in breast milk or not.
Contraindication
Hypersensitivity.
Storage Condition
Prior to dispensing: Store in a refrigerator, 2°C to 8°C
After dispensing to patient: Store at 20°C to 25°C
Innovators Monograph
You find simplified version here Zenheyl