Zivast L Forte Uses, Dosage, Side Effects and more

Atorvastatin (Lipitor®), is a lipid-lowering drug included in the statin class of medications. By inhibiting the endogenous production of cholesterol in the liver, statins lower abnormal cholesterol and lipid levels, and ultimately reduce the risk of cardiovascular disease. More specifically, statin medications competitively inhibit the enzyme hydroxymethylglutaryl-coenzyme A (HMG-CoA) Reductase, which catalyzes the conversion of HMG-CoA to mevalonic acid. This conversion is a critical metabolic reaction involved in the production of several compounds involved in lipid metabolism and transport, including cholesterol, low-density lipoprotein (LDL) (sometimes referred to as "bad cholesterol"), and very-low-density lipoprotein (VLDL). Prescribing statins is considered standard practice for patients following any cardiovascular event, and for people who are at moderate to high risk of developing cardiovascular disease. The evidence supporting statin use, coupled with minimal side effects and long term benefits, has resulted in wide use of this medication in North America.

Atorvastatin and other statins including lovastatin, pravastatin, rosuvastatin, fluvastatin, and simvastatin are considered first-line treatment options for dyslipidemia. The increasing use of this class of drugs is largely attributed to the rise in cardiovascular diseases (CVD) (such as heart attack, atherosclerosis, angina, peripheral artery disease, and stroke) in many countries. An elevated cholesterol level (elevated low-density lipoprotein (LDL) levels in particular) is a significant risk factor for the development of CVD. Several landmark studies demonstrate that the use of statins is associated with both a reduction in LDL levels and CVD risk. Statins were shown to reduce the incidences of all-cause mortality, including fatal and non-fatal CVD, as well as the need for surgical revascularization or angioplasty following a heart attack. Some evidence has shown that even for low-risk individuals (wAtorvastatin is an oral antilipemic agent that reversibly inhibits HMG-CoA reductase. It lowers total cholesterol, low-density lipoprotein-cholesterol (LDL-C), apolipoprotein B (apo B), non-high density lipoprotein-cholesterol (non-HDL-C), and triglyceride (TG) plasma concentrations while increasing HDL-C concentrations. High LDL-C, low HDL-C and high TG concentrations in the plasma are associated with increased risk of atherosclerosis and cardiovascular disease. The total cholesterol to HDL-C ratio is a strong predictor of coronary artery disease, and high ratios are associated with a higher risk of disease. Increased levels of HDL-C are associated with lower cardiovascular risk. By decreasing LDL-C and TG and increasing HDL-C, atorvastatin reduces the risk of cardiovascular morbidity and mortality.

Elevated cholesterol levels (and high low-density lipoprotein (LDL) levels in particular) are an important risk factor for the development of CVD. Clinical studies have shown that atorvastatin reduces LDL-C and total cholesterol by 36-53%. In patients with dysbetalipoproteinemia, atorvastatin reduced the levels of intermediate-density lipoprotein cholesterol. It has also been suggested that atorvastatin can limit the extent of angiogenesis, which can be useful in the treatment of chronic subdural hematoma.

Losartan, the first of a new class of antihypertensives, is a specific and selective antagonist of angiotensin II at the AT1 sites. Angitensin II is a potent vasoconstrictor, the primary vasoactive hormone of the renin-angiotensin system and an important component in the pathophysiology of hypertension. Losartan and its principal active metabolite block the vasoconstriction and aldosterone secreting effects of angiotensin II to the AT1 receptor found in many tissues. Losartan is now regarded as the first-line therapy option for treating high blood pressue.

Losartan is an angiotensin II receptor blocker used to treat hypertension, diabetic nephropathy, and to reduce the risk of stroke. Losartan has a long duration of action as it is given once daily. Patients taking losartan should be regularly monitored for hypotension, renal function, and potassium levels.

Trade Name Zivast L Forte
Generic Losartan + Atorvastatin
Type Tablet
Therapeutic Class
Manufacturer Fdc Limited
Available Country India
Last Updated: January 7, 2025 at 1:49 am

Uses

Atorvastatin is an HMG-CoA reductase inhibitor used to lower lipid levels and reduce the risk of cardiovascular disease including myocardial infarction and stroke.

Atorvastatin is indicated for the treatment of several types of dyslipidemias, including primary hyperlipidemia and mixed dyslipidemia in adults, hypertriglyceridemia, primary dysbetalipoproteinemia, homozygous familial hypercholesterolemia, and heterozygous familial hypercholesterolemia in adolescent patients with failed dietary modifications.

Dyslipidemia describes an elevation of plasma cholesterol, triglycerides or both as well as to the presence of low levels of high-density lipoprotein. This condition represents an increased risk for the development of atherosclerosis.

Atorvastatin is indicated, in combination with dietary modifications, to prevent cardiovascular events in patients with cardiac risk factors and/or abnormal lipid profiles.

Atorvastatin can be used as a preventive agent for myocardial infarction, stroke, revascularization, and angina, in patients without coronary heart disease but with multiple risk factors and in patients with type 2 diabetes without coronary heart disease but multiple risk factors.

Atorvastatin may be used as a preventive agent for non-fatal myocardial infarction, fatal and non-fatal stroke, revascularization procedures, hospitalization for congestive heart failure and angina in patients with coronary heart disease.

Prescribing of statin medications is considered standard practice following any cardiovascular events and for people with a moderate to high risk of development of CVD. Statin-indicated conditions include diabetes mellitus, clinical atherosclerosis (including myocardial infarction, acute coronary syndromes, stable angina, documented coronary artery disease, stroke, trans ischemic attack (TIA), documented carotid disease, peripheral artery disease, and claudication), abdominal aortic aneurysm, chronic kidney disease, and severely elevated LDL-C levels.

Losartan is an angiotensin II receptor blocker (ARB) used for:

Zivast L Forte is also used to associated treatment for these conditions: Anginal Pain, Cardiovascular Disease (CVD), Coronary Artery Disease (CAD), Coronary artery thrombosis, Dysbetalipoproteinemia, Fredrickson Type III lipidemia, Heterozygous Familial Hypercholesterolemia, High Blood Pressure (Hypertension), High Cholesterol, Homozygous Familial Hypercholesterolemia, Hospitalizations, Hypertriglyceridemias, Mixed Dyslipidemias, Mixed Hyperlipidemia, Myocardial Infarction, Non-familial hypercholesterolemia, Postoperative Thromboembolism, Primary Hypercholesterolemia, Stroke, Transient Ischemic Attack, Elevation of serum triglyceride levels, Heterozygous familial hyperlipidemia, Non-familial hyperlipidemia, Non-fatal myocardial infarction, Primary Hyperlipidemia, Revascularization procedures, Revascularization process, Thrombotic events, Cardiovascular Primary Prevention, Secondary prevention cardiovascular eventDiabetic Nephropathy, Heart Failure, High Blood Pressure (Hypertension), Marfan Syndrome, Stroke

How Zivast L Forte works

Atorvastatin is a statin medication and a competitive inhibitor of the enzyme HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase, which catalyzes the conversion of HMG-CoA to mevalonate, an early rate-limiting step in cholesterol biosynthesis. Atorvastatin acts primarily in the liver, where decreased hepatic cholesterol concentrations stimulate the upregulation of hepatic low-density lipoprotein (LDL) receptors, which increases hepatic uptake of LDL. Atorvastatin also reduces Very-Low-Density Lipoprotein-Cholesterol (VLDL-C), serum triglycerides (TG) and Intermediate Density Lipoproteins (IDL), as well as the number of apolipoprotein B (apo B) containing particles, but increases High-Density Lipoprotein Cholesterol (HDL-C).

In vitro and in vivo animal studies also demonstrate that atorvastatin exerts vasculoprotective effects independent of its lipid-lowering properties, also known as the pleiotropic effects of statins. These effects include improvement in endothelial function, enhanced stability of atherosclerotic plaques, reduced oxidative stress and inflammation, and inhibition of the thrombogenic response. Statins were also found to bind allosterically to β2 integrin function-associated antigen-1 (LFA-1), which plays an essential role in leukocyte trafficking and T cell activation.

Losartan reversibly and competitively prevents angiotensin II binding to the AT1 receptor in tissues like vascular smooth muscle and the adrenal gland. Losartan and its active metabolite bind the AT1 receptor with 1000 times more affinity than they bind to the AT2 receptor. The active metabolite of losartan is 10-40 times more potent by weight than unmetabolized losartan as an inhibitor of AT1 and is a non-competitive inhibitor. Losartan's prevention of angiotensin II binding causes vascular smooth muscle relaxation, lowering blood pressure.

Angiotensin II would otherwise bind to the AT1 receptor and induce vasoconstriction, raising blood pressure.

Dosage

Zivast L Forte dosage

Hypertension:

Hypertensive Patients with Left Ventricular Hypertrophy:

Nephropathy in Type 2 Diabetic Patients:

Use in elderly:

Side Effects

In controlled clinical trials in patients with essential hypertension, dizziness was the only side effect reported that occurred with an incidence greater than placebo in 1% or more of patients treated with Losartan. Rarely, rash was reported although the incidence in controlled clinical trials was less than placebo. Angioedema, involving swelling of the face, lips and/or tongue has been reported rarely in patients treated with Losartan. Serious hypotension (particularly on initiating treatment in salt-depleted patients) or renal failure (mainly in patients with renal artery stenosis) may be encountered during Losartan treatment.

Toxicity

The reported LD50 of oral atorvastatin in mice is higher than 5000 mg/kg. In cases of overdose with atorvastatin, there is reported symptoms of complicated breathing, jaundice, liver damage, dark urine, muscle pain, and seizures. In case of overdose, symptomatic treatment is recommended and due to the high plasma protein binding, hemodialysis is not expected to generate significant improvement.

In carcinogenic studies with high doses of atorvastatin, evidence of rhabdomyosarcoma, fibrosarcoma, liver adenoma, and liver carcinoma were observed.

In fertility studies with high doses of atorvastatin, there were events of aplasia, aspermia, low testis and epididymal weight, decreased sperm motility, decreased spermatid head concentration and increased abnormal sperm.

Atorvastatin was shown to not be mutagenic in diverse mutagenic assays.

The oral TDLO in mice is 1000mg/kg and in rats is 2000mg/kg. In humans the TDLO for men is 10mg/kg/2W and for women is 1mg/kg/1D.

Symptoms of overdose are likely to include hypotension, tachycardia, or bradycardia due to vagal stimulation. Supportive treatment should be instituted for symptomatic hypotension. Hemodialysis will not remove losartan or its active metabolite due to their high rates of protein binding.

Precaution

A lower dose should be considered for patients with a history of hepatic and renal impairment. Losartan should not be used with potassium-sparing diuretic

Interaction

No drug interaction of clinical significance has been identified. Compounds which have been studied in clinical pharmacokinetic trials include hydrochlorothiazide, digoxin, warfarin, cimetidine, ketoconazole and phenobarbital.

Volume of Distribution

The reported volume of distribution of atorvastatin is of 380 L.

The volume of distribution of losartan is 34.4±17.9L and 10.3±1.1L for the active metabolite (E-3174).

Elimination Route

Atorvastatin presents a dose-dependent and non-linear pharmacokinetic profile. It is very rapidly absorbed after oral administration. After the administration of a dose of 40 mg, its peak plasma concentration of 28 ng/ml is reached 1-2 hours after initial administration with an AUC of about 200 ng∙h/ml. Atorvastatin undergoes extensive first-pass metabolism in the wall of the gut and the liver, resulting in an absolute oral bioavailability of 14%. Plasma atorvastatin concentrations are lower (approximately 30% for Cmax and AUC) following evening drug administration compared with morning. However, LDL-C reduction is the same regardless of the time of day of drug administration.

Administration of atorvastatin with food results in prolonged Tmax and a reduction in Cmax and AUC.

Breast Cancer Resistance Protein (BCRP) is a membrane-bound protein that plays an important role in the absorption of atorvastatin. Evidence from pharmacogenetic studies of c.421C>A single nucleotide polymorphisms (SNPs) in the gene for BCRP has demonstrated that individuals with the 421AA genotype have reduced functional activity and 1.72-fold higher AUC for atorvastatin compared to study individuals with the control 421CC genotype. This has important implications for the variation in response to the drug in terms of efficacy and toxicity, particularly as the BCRP c.421C>A polymorphism occurs more frequently in Asian populations than in Caucasians. Other statin drugs impacted by this polymorphism include fluvastatin, simvastatin, and rosuvastatin.

Genetic differences in the OATP1B1 (organic-anion-transporting polypeptide 1B1) hepatic transporter encoded by the SCLCO1B1 gene (Solute Carrier Organic Anion Transporter family member 1B1) have been shown to impact atorvastatin pharmacokinetics. Evidence from pharmacogenetic studies of the c.521T>C single nucleotide polymorphism (SNP) in the gene encoding OATP1B1 (SLCO1B1) demonstrated that atorvastatin AUC was increased 2.45-fold for individuals homozygous for 521CC compared to homozygous 521TT individuals.[A181493] Other statin drugs impacted by this polymorphism include simvastatin, pitavastatin, rosuvastatin, and pravastatin.

Losartan is approximately 33% orally bioavailable. Losartan has a Tmax of 1 hour and the active metabolite has a Tmax of 3-4 hours. Taking losartan with food decreases the Cmax but does only results in a 10% decrease in the AUC of losartan and its active metabolite. A 50-80mg oral dose of losartan leads to a Cmax of 200-250ng/mL.

Half Life

The half-life of atorvastatin is 14 hours while the half-life of its metabolites can reach up to 30 hours.

The terminal elimination half life of losartan is 1.5-2.5 hours while the active metabolite has a half life of 6-9 hours.

Clearance

The registered total plasma clearance of atorvastatin is of 625 ml/min.

Losartan has a total plasma clearance of 600mL/min and a renal clearance of 75mL/min. E-3174, the active metabolite, has a total plasma clearance of 50mL/min and a renal clearance of 25mL/min.

Elimination Route

Atorvastatin and its metabolites are mainly eliminated in the bile without enterohepatic recirculation. The renal elimination of atorvastatin is very minimal and represents less than 1% of the eliminated dose.

A single oral dose of losartan leads to 4% recovery in the urine as unchanged losartan, 6% in the urine as the active metabolite. Oral radiolabelled losartan is 35% recovered in urine and 60% in feces. Intravenous radiolabelled losartan is 45% recovered in urine and 50% in feces.

Pregnancy & Breastfeeding use

Although there is no experience with the use of Losartan in pregnant women, animal studies with Losartan potassium have demonstrated fetal and neonatal injury and death, the mechanism of which is believed to be pharmacologically mediated through effects on the renin angiotensinaldosterone system. Losartan should not be used in pregnancy and if pregnancy is detected Losartan should be discontinued as soon as possible.

It is not known whether Losartan is excreted in human breast milk. However, significant level of Losartan found in rat milk which suggests that the drug should not be used in lactating mother.

Contraindication

It is also contraindicated to patients who are hypersensitive to any component of this product. In patients who are intravenously volume depleted (e.g. those treated with high dose diuretics), symptomatic hypotension may occur. These conditions Losartan potassium should be corrected prior to administer Losartan or a lower starting dose (usually 25 mg) should be used.

Special Warning

No initial dosage adjustment is necessary in patients with mild renal impairment (CrCl 20-50 ml/min). For patients with moderate to severe renal impairment (CrCl <20 ml/min) or patients on dialysis, a lower starting dose of 25 mg is recommended.

Acute Overdose

Limited data are available regarding overdose in humans. The most likely manifestation of overdose would be hypotension and tachycardia; bradycardia could occur from parasympathetic (vagal) stimulation. Supportive treatment should include repletion of the intravascular volume. Neither Losartan nor the active metabolite can be removed by hemodialysis.

Storage Condition

Store between 15-30°C

Innovators Monograph


*** Taking medicines without doctor's advice can cause long-term problems.
Share